首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The nonspecific interaction of proteins with surfaces in contact with biofluids leads to adverse problems and is prevented by a biocompatible surface coating. The current benchmark material among such coatings is poly(ethylene glycol) (PEG). Herein, we report on the synthesis of linear polyglycerol derivatives as promising alternatives to PEG. Therefore, gold surfaces as a model system are functionalized with a self‐assembled monolayer (SAM) by a two‐step anhydride coupling and a direct thiol immobilization of linear poly(methyl glycerol) and polyglycerol. Surface plasmon resonance (SPR) spectroscopy reveals both types of functionalized surfaces to be as resistant as PEG towards the adsorption of the test proteins fibrinogen, pepsin, albumin, and lysozyme. Moreover, linear polyglycerols adsorb even less proteins from human plasma than a PEG‐modified surface. Additional cell adhesion experiments on linear poly(methyl glycerol) and polyglycerol‐modified surfaces show comparable cell resistance as for a PEG‐modified surface. Also, in the case of long‐term stability, high cell resistance is observed for all samples in medium. Additional in vitro cell‐toxicity tests add to the argument that linear poly(methyl glycerol) and polyglycerol are strong candidates for promising alternatives to PEG, which can easily be modified for biocompatible functionalization of other surfaces.  相似文献   

2.
利用分子动力学模拟研究了五种不同种类的溶质分子(K+, Mg2+, Cl-, K-和K0)在直径为0.60-1.28 nm的纳米碳管内的水化结构. 模拟结果揭示了单电荷溶质、双电荷溶质和中性溶质在受限条件下具有不同的水化行为. 单价溶质的配位数只有在直径不大于0.73 nm的纳米碳管内才会明显减少. 和带有电荷的溶质不同, 中性溶质的配位数对纳米碳管直径的改变非常敏感, 并且随着管径的减小而迅速减少. 模拟结果还表明带单价正电荷的溶质(K+)第一配位层水分子的取向结构会随着纳米碳管直径的改变发生变化, 而其他溶质配位层取向结构在本文所涉及的纳米碳管内都几乎和体相中一致. 在直径大于1.0 nm的纳米碳管中, K+的配位层取向结构有序度随着管径的减小而单调下降, 但是在直径小于1.0 nm的纳米碳管中, 随着碳管管径的减小而迅速上升. 在两个最窄的纳米碳管内, 其结构有度甚至高于体相. 双电荷溶质的水化结构在本文所研究的碳管直径范围内和体相完全一致, 即使在直径只有0.6 nm的碳管内也无任何改变.  相似文献   

3.
The superior physical properties of carbon nanotubes (CNTs) have led to their broad application. Intrinsically, CNTs tend to agglomerate from hydrophobic interactions, which is highly undesirable for solution processing and device fabrication. Commonly, a stabilizer consisting of organic surfactants or polymers is used to disperse CNTs. Recently, we synthesized nitrogen‐doped carbon hollow nanospheres (25–90 nm), termed carbon “nanobubbles”. They bear superior dispersability in water and distinctive graphitic order. Herein, we describe the nanobubble‐assisted dispersion of CNTs in aqueous solution upon sonication. This process relies on the π–π interaction between the two aromatic carbon nanostructures, which can process their carbon mixture in water into conductive filter membranes, ink, and discs. This stabilization can be extended to other aromatic carbons. In addition, the π–π interaction may create a new type of carbon p–n junction that can be used to improve charge separation.  相似文献   

4.
In order to investigate the catalytic activity of high temperature treated CoPc toward oxygen reduction, and find the active site of the catalyst, using cobalt (Ⅱ) phthalocyanine (CoPc) as raw material, through thermal chemical vapor deposition method at 850℃ under a current of Ar/H2, two layer well-aligned multiwalled carbon nanotubes (CNTs) were made. The diameters of the well-aligned carbon nanotubes were distributed in the range of 60~120 nm and the length was about 40 μm. The Co particle with 10 nm in diameter was encapsulated in the CNTs compartment. The products were observed by field emission scanning electron microscope (SEM), and transmission electron microscope (TEM). The well-aligned carbon nanotubes were characteriszed by Raman scattering spectrum and X-ray diffraction (XRD). The cyclic voltammetric measurement demonstrates that the CNTs have some effect to prevent the metal nanoparticle encapsulated from eroding rapidly. It is assumed that the small amount of the N element in the CNTs is very necessary for the bamboo-like morphology and the protected action for metal particles against dissolution in the acid medium. The radian of the winding wall should be affected by the amount of the N and the interaction between the N in the carbon network and the metal cluster. In addition, the CNTs greater electrochemically active surface area is a great advantage for any electrocatalytic application.  相似文献   

5.
Pristine CNTs are exemplary hydrophobic solutes; properly functionalized CNTs can be seen as hydrophilic ones. The solubility of aminotriethylene glycol (ATG) functionalized single walled carbon nanotubes (fSWCNTs) were examined using density functional based tight binding method. According to the dynamics study, the ATG-fSWCNTs interaction energies (IE) and diffusion coefficients (D) are diameter dependent. As the diameter of the (n,0) tube is incrementally increased, a distinguishable pattern is observed, specifically the IE of the ATG-fSWCNT in water is quite higher for n that is an integral multiple of three (n = 9,12,15) while the D is lower due to its π bonding structures. In general, the metallic ATG functionalized nanotube possess a higher IE and a much lower D in aqueous media. © 2019 Wiley Periodicals, Inc.  相似文献   

6.
Multi-walled carbon nanotubes (MW-CNTs) were prepared by chemical vapor deposition (CVD) method with the decomposition of acetylene over Co/SiO2 catalyst. TG-DTA technique was used together with TEM and XRD to study the effect of reaction temperature on the composition, graphitized extent, and diameter distribution of the produced raw CNTs based on their oxidization resistance. During the decomposition, the micro-crystallite of the active constituent (Co/SiO2) were growing up as the reaction temperature rising. This in turn resulted in an increase of the diameter distribution range of produced MW-CNTs. The average diameter increased from 20~30 nm (650℃) to 30~50 nm (750℃). XRD results also showed the graphitized extent of MW-CNTs was enhanced meanwhile the spacing between the layers (d002) decreased from 3.45 (650℃) to 3.32 (850℃) with the reaction temperature raised. TG-DTA data showed that the exothermic peak of the amorphous carbon was below 380℃and its content would decrease as temperature increasing. In summary, for CVD production of CNTs using acetylene gas on Co/SiO2 catalyst, low temperature (about 650℃) favored producing thinner MW-CNTs with the diameter from 20 to 30 nm while higher temperature (about 850℃) is favored thicker MW-CNTs (diameter from 70 to 100 nm).  相似文献   

7.
We report the tuning of the redox properties of iron and iron oxide nanoparticles by encapsulation within carbon nanotubes (CNTs) with varying inner diameters. Raman spectroscopy was employed to investigate the interaction of the encapsulated nanoparticles with the CNTs. A red shift of the Fe-O mode is observed in the nanoparticles deposited on the outer CNT surfaces with respect to bulk Fe2O3. However, this mode is found to be stepwise blue-shifted with decreasing inner diameter in the CNT-encapsulated Fe2O3 nanoparticles, suggesting an enhanced interaction of Fe2O3 with the inner CNT surface as its curvature increases. The autoreduction of the encapsulated Fe2O3 is significantly facilitated inside CNTs with respect to the outside nanoparticles. Interestingly, it becomes more facile with decreasing CNT channel diameter as evidenced by temperature programmed reaction, in situ XRD, and Raman spectroscopy. The oxidation of encapsulated metallic Fe nanoparticles on the other hand is retarded in comparison to that of the outside Fe particles as shown by in situ XRD and gravimetrical measurements with an online microbalance. We attribute this tunable redox behavior of transition metal nanoparticles inside CNTs to a particular electronic interaction of the encapsulates with the interior CNT surface, which stabilizes the metallic state of Fe.  相似文献   

8.
丁二酰亚胺类分散剂体系的介观模拟研究   总被引:3,自引:0,他引:3  
以润滑油添加剂丁二酰亚胺类分散剂的分散性能为研究目标,运用耗散粒子动力学介观模拟方法考察了分散剂结构、用量、与润滑油的相互作用等因素对分散性能的影响,并用分子模拟方法估算了模拟需要的介观参数.通过恰当地定义分散性能,选择合适的模型化合物,得到了与实验研究定性一致的模拟结果.为润滑油分散剂的分子设计提供有益的理论指导.  相似文献   

9.
The formation of biominerals by living organisms is governed by the cooperation of soluble and insoluble macromolecules with peculiar interfacial properties. To date, most of the studies on mineralization processes involve model systems that only account for the existence of one organic matrix and thus disregard the interaction between the soluble and insoluble organic components that is crucial for a better understanding of the processes taking place at the inorganic-organic interface. We have set up a model system composed of a matrix surface, namely, a self-assembled monolayer (SAM), and a soluble component, hyperbranched polyglycerol. The model mineral calcium carbonate displays diverse polymorphism. It could be demonstrated that the phase selection of calcium carbonate is controlled by the cooperative interaction of the SAM and hyperbranched polyglycerol of different molecular weights (M(n) = 500-6000 g/mol) adsorbed to the SAM. Our studies showed that hyperbranched polyglycerol is adsorbed to polar as well as to nonpolar SAMs. This effect can be related to its highly flexible structure and its amphiphilic character. The adsorption of hyperbranched polyglycerol to the SAMs with different surface polarities resulted in the formation of aragonite for alkyl-terminated SAMs and no phase selection for carboxylate-terminated SAMs.  相似文献   

10.
碳纳米管独特的几何和电子结构使其具有丰富优异的性质,因此在过去的二十余年备受研究者的关注。然而,碳纳米管结构的多样性成为其从实验室走到产业化的最大阻碍,结构决定性质,制备决定未来,完善的结构控制制备技术将成为碳纳米管基础研究和产业化应用中至关重要的一环。本文首先对碳纳米管的结构进行描述,然后综述了碳纳米管的结构可控制备方法和溶液纯化分离技术,提出未来理想的碳纳米管制备之路是将碳纳米管精细结构控制方法与宏量制备技术相结合,在降低碳纳米管生产成本的同时,提高其纯度,并建立碳纳米管产品的标准。最后,展望了碳纳米管的杀手锏级应用和该领域的机遇和挑战。  相似文献   

11.
The noncovalent interactions between encapsulated water chains and single‐walled carbon nanotube (SWCNT) are studied using a self‐consistent charge density functional tight binding method with dispersion correction. The most interesting and important feature we observe is the diameter shrinking of CNTs when water chains are confined inside SWCNT. The diameter shrinking of CNTs can be suggested to the original of the van der Waals and H‐π interaction between water chains and CNTs. The calculated Raman spectra show the interactions between SWCNTs and water chains probably give rise to a kind of “mode hardening effect,” which agrees with the diameter shrinking of CNTs when water chains are confined inside SWCNT. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011.  相似文献   

12.
Dendrimer‐based supramolecular hydrogels have gained attention in biomedical fields. While biocompatible dendrimers were used to prepare hydrogels via physical and/or chemical crosslinking, smart functions such as pH and molecular control remain undeveloped. Here, we present polyglycerol dendrimer‐based supramolecular hydrogel formation induced by a specific interaction between the polyglycerol dendrimer and an amino group of glycol chitosan. Gelation was achieved by mixing the two aqueous solutions. Hydrogel formation was controlled by varying the polyglycerol dendrimer generation. The hydrogel showed pH‐dependent swelling; strongly acidic conditions induced degradation via dissociation of the specific interaction. It also showed unique l ‐arginine‐responsive degradation capability due to competitive exchange of the amino groups of glycol chitosan and l ‐arginine. These polyglycerol dendrimer‐based supramolecular characteristics allow multimodal application in smart biomaterials.  相似文献   

13.
ABSTRACT

The purpose of this work was to prepare hydrophilic anionic derivatives of polyglycerol esters in order to obtain new surfactants, characterized by the cosmetologic compatibility of renewable raw materials and the mildness of the chosen target surfactants. The derivatization has been done by esterification between polyglycerol esters (PGE) and maleic anhydride (MA) followed by sulfonation at the double bond, by sodium sulfite, getting sulfosuccinic derivatives. Polyglycerol esters composed of fatty acids of C12 to C16 and polyglycerol with chain length of n=l?10 served as raw materials for a number of sulfosuccinates. The surface properties (cmc; surface excess concentration, γ; surface molecular area, A; effectiveness, πcmc; efficiency, pC20 contact angle, θ; wetting time and foam performance) of the raw materials and their anionic derivatives have been measured. The relationships between the chemical structure and the surface properties of the new surfactants have been established. Higher πcmc and better foaming performance but lower wetting power were obtained by increasing hydrophilic chain length, to n=6. Over this length an opposite trend was found. A linear relationship beween log cmc and hydrophobic chain length was determined. Optimization of surface properties was accomplished by optimizing maleation conditions.  相似文献   

14.
为高效利用半焦资源,选择适宜的水焦浆分散剂以提高兰炭制备水焦浆的性能,本研究以陕北半焦及四种不同分散剂(腐植酸钠SH、木质素磺酸钠SLS、十二烷基磺酸钠SDS和一种自制衣康酸型分散剂IPMS)为研究对象,探讨了不同添加剂对水焦浆成浆特性的影响。利用Material Studio(MS)软件计算了分散剂的结构参数及半焦与分散剂间的相互作用能,从量子化学角度对分散剂的作用进行探讨,并与制浆实验结果进行比较。结果表明,加入分散剂可有效降低液体表面张力,增大半焦颗粒表面电负性,从而增强颗粒间静电排斥作用使得浆体更加稳定。相同制备条件下,分散剂IPMS制备水焦浆时效果较优,在剪切速率为100 s~(-1)时,其表观黏度为625 mP·s,7 d析水率仅为2.38%且无硬沉淀。通过计算机模拟得出吸附过程中分散剂的氧原子向半焦的羟基一侧靠近,产生电荷转移,四种分散剂活性大小顺序为IMPS SH SLS SDS,IMPS与半焦相互作用的吸附作用较强与实验结果一致。证明了采用量子化学计算结合实验数据可以对水焦浆分散剂的性能进行评价,为浆体燃料制备技术及新型药剂的设计开发提供了理论基础。  相似文献   

15.
Heat capacities of the carbon nanotubes (CNTs) with different sizes have been measured by modulated temperature differential scanning calorimetry (MDSC) and reported for the first time. The results indicated the values of C p increased with shortening length of CNTs when the diameters of CNTs were between 60 and 100 nm. However, the values of C p of CNTs were not affected by their diameter when the lengths of CNTs were 1–2 um, or not affected by the length of CNTs when their diameters were below 10 nm. The thermal stabilities of the CNTs have been studied by TG-DTG-DSC. The results of TG-DTG showed that thermal stabilities of CNTs were enhanced with their diameters increase. With lengths increase, the thermal stabilities of CNTs increased when their diameters were between 60 and 100 nm, but there is a slight decrease when their diameters were less than 60 nm. The further DSC analyses showed both released heat and T onset increased with the increase of CNTs diameters, which confirms the consistency of the results from both TG-DTG and DSC on CNTs thermal stability.  相似文献   

16.
A new method is demonstrated to quantify local ring strain, which is based on the expectation value of orbital angular momentum along the internuclear axis. In contrast to energy based methods which provide overall ring strain, this method is able to identify the local strain in every part of the ring. The formalism is benchmarked on several cycloalkanes in which the presence of ring strain is well understood. The ring strain plays a decisive role in carbon nanotubes (CNTs) properties; for instance, the hydrogen storage capability of CNTs is related to their diameter, which in turn has a close relation to the ring strain in their C? C bonds. On this basis, the ring strain in five CNTs with different diameters is analyzed and the results reflected meaningful correlation between the CNTs diameter and ring strain. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.

A series of polyglycerol diisostearate ethoxylates with two hydrophobic chains were prepared by the reaction of polyglycerol diisostearate with ethylene oxide. Surface properties including water solubility, cloud temperature, critical micelle concentration, emulsification, and the solubilizing capacity of polyglycerol diisostearate ethoxylates for simvastatin were investigated in comparison with those of Tween‐80. The critical micelle concentrations of all polyglycerol diisostearate ethoxylates are less than 0.01 mmol l?1, which is one order of magnitude lower than that of Tween‐80. Polyglycerol diisostearate ethoxylates show better emulsification than Tween‐80. For enhancing the solubility of simvastatin in micelles, polyglycerol diisostearate ethoxylates also are superior to Tween‐80.  相似文献   

18.
By using the advantages of carbon nanotubes (CNTs), such as their excellent mechanical properties and low density, CNT-reinforced metal matrix composites (MMCs) are expected to overcome the limitations of conventional metal materials, i.e., their high density and low ductility. To understand the behavior of composite materials, it is necessary to observe the behavior at the molecular level and to understand the effect of various factors, such as the radius and content of CNTs. Therefore, in this study, the effect of the CNT radius and content on the mechanical properties of CNT-Al composites was observed using a series of molecular dynamics simulations, particularly focusing on MMCs with a high CNT content and large CNT diameter. The mechanical properties, such as the strength and stiffness, were increased with an increasing CNT radius. As the CNT content increased, the strength and stiffness increased; however, the fracture strain was not affected. The behavior of double-walled carbon nanotubes (DWNTs) and single-walled carbon nanotubes (SWNTs) was compared through the decomposition of the stress–strain curve and observations of the atomic stress field. The fracture strain increased significantly for SWNT-Al as the tensile force was applied in the axial direction of the armchair CNTs. In the case of DWNTs, an early failure was initiated at the inner CNTs. In addition, the change in the elastic modulus according to the CNT content was predicted using the modified rule of mixture. This study is expected to be useful for the design and development of high-performance MMCs reinforced by CNTs.  相似文献   

19.
《Analytical letters》2012,45(2):379-393
Adsorptions of dimethyl phthalate (DMP) on carbon nanotubes (CNTs) in aqueous phase at various pH and temperatures were studied. The increase in pH results in the increase in adsorption coefficient. The adsorption is governed by the π-π electron interaction which is affected by the changes in pH of the medium. The outer diameter of the CNTs greatly influences the adsorption behavior of CNT for DMP. Under the same working temperature, the adsorption capacity of CNTs for DMP is inversely related to the average outer diameter of the CNT: single-walled SWCNT (1.4 nm)>multi-walled MWCNT10 (9.4 nm)>MWCNT30 (27.8 nm)>MWCNT40 (42.7 nm). The larger surface area of CNTs provides many active sites for adsorption of DMP molecules. The Freundlich model can describe well the adsorption isotherms of DMP on CNTs. The thermodynamic parameters of standard free energy, standard enthalpy (ΔH), and standard entropy changes are determined, showing that the adsorption of DMP on CNTs is an endothermic and spontaneous reaction. The ΔH value of 27.8 nm-sized MWCNT (22.69 kJ/mol) is higher than 1.4 nm-sized SWCNT (6.05 kJ/mol), inferring that the adsorption process becomes more endothermic with the increase in the outer diameter of CNTs.  相似文献   

20.
管再鸿  卢胜梅  李灿 《催化学报》2015,(9):1535-1542
碳纳米管的独特性质,特别是其一维有序的管腔结构所形成的限域环境在催化反应中的应用引起了广泛的兴趣.已有将常规的液相氢化反应和气相反应限域于碳纳米管内的研究报道,并且大多数的研究结果显示限域于碳纳米管内的反应活性和/或选择性有明显提高,但多数研究没有对此给出清晰的解释.金鸡纳碱修饰的Pt催化剂催化的α-酮酸酯不对称氢化体系被认为是多相不对称催化领域发展的里程碑.早期的研究是简单的将碳纳米管作为Pt催化剂的载体用于α-酮酸酯不对称氢化反应,取得了中等的活性和对映体选择性.我们研究组发展了一种催化剂制备方法,可选择性的将Pt纳米粒子限域于碳纳米管管腔内或担载在碳纳米管管外,并将所制备的碳纳米管Pt催化剂应用于α-酮酸酯多相不对称催化反应中,发现封装于管腔内的管内型Pt纳米粒子的催化性能显著高于负载在管腔外壁的管外型Pt纳米粒子的催化性能.然而,对于管内型Pt催化剂催化性能增强的原因并不清楚. CO化学吸附和高分辨投射电镜(HRTEM)的表征结果表明管腔内外的Pt纳米粒子的大小和形貌没有明显区别.本论文在上述研究基础上,采用X射线光电子能谱(XPS),氢气程序升温脱附(H2-TPD),紫外可见光谱(UV-Vis)等表征手段研究了Pt纳米粒子担载于碳纳米管内和管外形成的催化剂在α-酮酸酯的不对称氢化反应中催化性能差异的原因. XPS测试结果表明,管内型和管外型Pt催化剂的载体的碳物种分布没有显出差异,但催化活性中心Pt纳米粒子的Pt物种组成不同.经225 oC H2还原后管外型Pt催化剂不存在高氧化态的Pt物种,而管内型Pt催化剂在400 oC H2还原仍然具有7%的高氧化态Pt物种.相应的催化反应结果表明,具有这种稳定的高氧化态Pt物种有利于获得高对映体选择性.参比催化剂商业化的Pt/AC和Pt/Al2O3的XPS测试结果也表明,对映体选择性高的Pt/Al2O3催化剂具有较高含量的高氧化态Pt物种.同时我们发现高氧化态Pt物种有利于催化剂对手性修饰剂和反应底物的吸附.虽然文献中一般认为Pt0是该反应的活性中心,但我们认为这些高氧化态的Pt物种有利于纳米粒子和手性修饰剂之间的相互作用,从而提高反应的对映选择性.我们进一步研究了表明高氧化态的Pt物种能存在于碳纳米管管腔内的原因.发现在催化剂制备过程中所使用的还原剂甲酸钠中残留的钠离子能稳定碳纳米管管腔内高氧化态Pt物种.我们采用H2直接还原制备了不含钠离子的参比管内型Pt催化剂.该参比催化剂的对映体选择性与管外型Pt催化剂相当,明显低于管内型Pt催化剂.同时该参比催化剂对手性修饰剂和底物的吸附能力弱于管内型Pt催化剂.以上结果清晰的表明了碳纳米管内由钠离子稳定的高氧化态Pt物种在α-酮酸酯多相不对称催化反应中的重要作用.然而,我们发现高氧化态Pt+物种含量的差异并不能很好的解释管内型和管外型Pt催化剂反应活性的差异. H2-TPD的结果表明相比于管外型Pt纳米粒子催化剂,管内型Pt纳米粒子具有更高的活化氢分子的能力,相应的催化反应结果表明,管外型Pt催化剂的反应活性随H2压力的降低而显著降低,而管内型Pt催化剂在0.1 MPa H2条件下仍然具有较高活性.简单的动力学模拟结果表明,在0.1 MPa H2条件下,碳纳米管管腔能显著富集H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号