首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Let G be a finite abelian group of order n and Davenport constant D(G). Let S=0h(S)gGgvg(S)∈F(G) be a sequence with a maximal multiplicity h(S) attained by 0 and t=|S|?n+D(G)−1. Then 0∈k(S) for every 1?k?t+1−D(G). This is a refinement of the fundamental result of Gao [W.D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58 (1996) 100-103].  相似文献   

2.
Let D be a connected oriented graph. A set SV(D) is convex in D if, for every pair of vertices x,yS, the vertex set of every x-y geodesic (x-y shortest dipath) and y-x geodesic in D is contained in S. The convexity numbercon(D) of a nontrivial oriented graph D is the maximum cardinality of a proper convex set of D. Let G be a graph. We define that SC(G)={con(D):D is an orientation of G} and SSC(G)={con(D):D is a strongly connected orientation of G}. In the paper, we show that, for any n?4, 1?a?n-2, and a≠2, there exists a 2-connected graph G with n vertices such that SC(G)=SSC(G)={a,n-1} and there is no connected graph G of order n?3 with SSC(G)={n-1}. Then, we determine that SC(K3)={1,2}, SC(K4)={1,3}, SSC(K3)=SSC(K4)={1}, SC(K5)={1,3,4}, SC(K6)={1,3,4,5}, SSC(K5)=SSC(K6)={1,3}, SC(Kn)={1,3,5,6,…,n-1}, SSC(Kn)={1,3,5,6,…,n-2} for n?7. Finally, we prove that, for any integers n, m, and k with , 1?k?n-1, and k≠2,4, there exists a strongly connected oriented graph D with n vertices, m edges, and convexity number k.  相似文献   

3.
We study the mod 2 homology of the double and triple loop spaces of homogeneous spaces associated with exceptional Lie groups. The main computational tools are the Serre spectral sequence for fibrations Ωn+1GΩn+1(G/H)→ΩnH for n=1,2, and the Eilenberg-Moore spectral sequence associated with related fiber squares, which both converge to the same destination space H(Ωn(G/H);F2). We also develop the generalized Bockstein lemma to determine the higher Bockstein actions.  相似文献   

4.
Let A be a Noetherian local ring with the maximal ideal m and an m-primary ideal J. Let S=?n≥0Sn be a finitely generated standard graded algebra over A. Set S+=?n>0Sn. Denote by FJ(S)=?n≥0→(Sn/JSn) the fiber cone of S with respect to J. The paper characterizes the multiplicity and the Cohen-Macaulayness of FJ(S) in terms of minimal reductions of S+.  相似文献   

5.
Let G be an (m+2)-graph on n vertices, and F be a linear forest in G with |E(F)|=m and ω1(F)=s, where ω1(F) is the number of components of order one in F. We denote by σ3(G) the minimum value of the degree sum of three vertices which are pairwise non-adjacent. In this paper, we give several σ3 conditions for a dominating cycle or a hamiltonian cycle passing through a linear forest. We first prove that if σ3(G)≥n+2m+2+max{s−3,0}, then every longest cycle passing through F is dominating. Using this result, we prove that if σ3(G)≥n+κ(G)+2m−1 then G contains a hamiltonian cycle passing through F. As a corollary, we obtain a result that if G is a 3-connected graph and σ3(G)≥n+κ(G)+2, then G is hamiltonian-connected.  相似文献   

6.
In [7] Passi proved that for a finite p-group, p ≠ 2, one has G4 = D4. We generalize this to say that Gn = Dn as long as n?p + 1. We also generalize a theorem of Quillen [8], using entirely different methods from his, and give his result as a corollary. In order to do this, we construct natural algorithms (spectral sequences) which compute the graded Lie algebra ?iGi/Gi+1 and the graded algebra ? Ii(G)/Ii+1(G) respectively, for any group G, in terms of a presentation. A natural transformation between these spectral sequences exists, and analysing its properties by some new combinatorial methods yields the results.  相似文献   

7.
Let D be a directed graph; the (l,ω)-Independence Number of graph D, denoted by αl,ω(D), is an important performance parameter for interconnection networks. De Bruijn networks and Kautz networks, denoted by B(d,n) and K(d,n) respectively, are versatile and efficient topological structures of interconnection networks. For l=1,2,…,n, this paper shows that αl,d−1(B(d,n))=dn,αl,d−1(K(d,n))=αl,d(K(d,n))=dn+dn−1 if d≥3 and nd−2. In particular, the paper shows the exact value of the Independence Number for B(d,1) and B(d,2) for any d. For the generalized situation, the paper obtains a lower bound αl,d−1(B(d,n))≥d2 if n≥3 and d≥5.  相似文献   

8.
For an oriented graph D, let ID[u,v] denote the set of all vertices lying on a u-v geodesic or a v-u geodesic. For SV(D), let ID[S] denote the union of all ID[u,v] for all u,vS. Let [S]D denote the smallest convex set containing S. The geodetic number g(D) of an oriented graph D is the minimum cardinality of a set S with ID[S]=V(D) and the hull number h(D) of an oriented graph D is the minimum cardinality of a set S with [S]D=V(D). For a connected graph G, let O(G) be the set of all orientations of G, define g(G)=min{g(D):DO(G)}, g+(G)=max{g(D):DO(G)}, h(G)=min{h(D):DO(G)}, and h+(G)=max{h(D):DO(G)}. By the above definitions, h(G)≤g(G) and h+(G)≤g+(G). In the paper, we prove that g(G)<h+(G) for a connected graph G of order at least 3, and for any nonnegative integers a and b, there exists a connected graph G such that g(G)−h(G)=a and g+(G)−h+(G)=b. These results answer a problem of Farrugia in [A. Farrugia, Orientable convexity, geodetic and hull numbers in graphs, Discrete Appl. Math. 148 (2005) 256-262].  相似文献   

9.
Summary We study minimal and totally geodesic submanifolds in Lie groups and related problems. We show that: (1) The imbedding of the Grassmann manifold GF(n,N) in the Lie group GF(N) defined naturally makes GF(n,N) a totally geodesic submanifold; (2) The imbedding S7SO(8) defined by octonians makes S7a totally geodesic submanifold inSO(8); (3) The natural inclusion of the Lie group GF(N) in the sphere ScN^2-1(√N) of gl(N,F)is minimal. Therefore the natural imbedding GF(N)<span style='font-size:10.0pt;font-family:"Lucida Sans Unicode"'>→gl(N,F)is formed by the eigenfunctions of the Laplacian on GF(N).  相似文献   

10.
Let H be a definite quaternion algebra over Q with discriminant DH and R a maximal order of H. We denote by Gn a quaternionic unitary group and put Γn=Gn(Q)∩GL2n(R). Let Sκ(Γn) be the space of cusp forms of weight κ with respect to Γn on the quaternion half-space of degree n. We construct a lifting from primitive forms in Sk(SL2(Z)) to Sk+2n−2(Γn) and a lifting from primitive forms in Sk(Γ0(d)) to Sk+2(Γ2), where d is a factor of DH. These liftings are generalizations of the Maass lifting investigated by Krieg.  相似文献   

11.
Say that graph G is partitionable if there exist integers α?2, ω? 2, such that |V(G)| ≡ αω + 1 and for every υ?V(G) there exist partitions of V(G)\ υ into stable sets of size α and into eliques of size ω. An immediate consequence of Lovász' characterization of perfect graphs is that every minimal imperfect graph G is partitionable with αα (G) andωω(G).Padberg has shown that in every minimal imperfect graph G the cliques and stable sets of maximum size satisfy a series of conditions that reflect extraordinary symmetry G. Among these conditions are: the number of cliques of size ω(G) is exactly |V(G)|; the number of stable sets of size α(G) is exactly |V(G)|: every vertex of G is contained in exactly ω(G) cliques of size ω(G) and α(G) stable sets of size α(G): for every clique Q (respectively, stable set S) of maximum size there is a unique stable set S (clique O) of maximum size such that QSØ.Let Cnk denote the graph whose vertices can be enumerated as υ1,…,υn in such a way that υ1 and υ1 are adjacent in G if and only if i and j differ by at most k, modulo n. Chvátal has shown that Berge's Strong Perfect graph Conjecture is equivalent to the conjecture that if G is minimal imperfect with α(G) ≡ αandω(G) ≡ ω, then G has a spanning subgraph isomorphic to Cαω+1ω. Padberg's conditions are sufficiently restrictive to suggest the possibility of establishing the Strong Perfect Graph Conjecture by proving that any graph G satisfying these conditions must contain a spanning subgraph isomorphic to Cαω+1ω, whereα(G) ≡ αandω(G) ≡ ω. It is shown here, using only elementary linear algebra, that all partitionable graphs satisfy Padberg's conditions, as well as additional properties of the same spirit. Then examples are provided of partitionable graphs which contain no spanning subgraph isomorphic to Cαω+1ω, whereα(G) ≡ α and ω(G) ≡ ω.  相似文献   

12.
13.
Assuming the absence of Q-points (which is consistent with ZFC) we prove that the free topological group F(X) over a Tychonov space X is o-bounded if and only if every continuous metrizable image T of X satisfies the selection principle fin?(O,Ω) (the latter means that for every sequence 〈unnω of open covers of T there exists a sequence 〈vnnω such that vn∈[un]<ω and for every F∈[X]<ω there exists nω with F⊂?vn). This characterization gives a consistent answer to a problem posed by C. Hernándes, D. Robbie, and M. Tkachenko in 2000.  相似文献   

14.
Let F be a field, n a non-negative integer, λ a partition of n and Sλ the corresponding Specht module for the Iwahori-Hecke algebra HF,q(Sn). James and Mathas conjecture a necessary and sufficient condition on λ for Sλ to be irreducible. We prove the sufficiency of this condition in the case where F has infinite characteristic and also in the case where q=1.  相似文献   

15.
Let F be a field of characteristic different from 2, and G a group with involution ∗. Write (FG)+ for the set of elements in the group ring FG that are symmetric with respect to the induced involution. Recently, Giambruno, Polcino Milies and Sehgal showed that if G has no 2-elements, and (FG)+ is Lie nilpotent (resp. Lie n-Engel), then FG is Lie nilpotent (resp. Lie m-Engel, for some m). Here, we classify the groups containing 2-elements such that (FG)+ is Lie nilpotent or Lie n-Engel.  相似文献   

16.
Let D be an F-central division algebra of index n. Here we present a criterion for the triviality of the group G(D) = D*/Nrd D/F (D*)D′ and thus generalizing various related results published recently. To be more precise, it is shown that G(D) = 1 if and only if SK 1(D) = 1 and F *2 = F *2n . Using this, we investigate the role of some particular subgroups of D* in the algebraic structure of D. In this direction, it is proved that a division algebra D of prime index is a symbol algebra if and only if D* contains a non-abelian nilpotent subgroup. More applications of this criterion including the computation of G(D) and the structure of maximal subgroups of D* are also investigated  相似文献   

17.
For a graph G=(V,E) with vertex-set V={1,2,…,n}, which is allowed to have parallel edges, and for a field F, let S(G;F) be the set of all F-valued symmetric n×n matrices A which represent G. The maximum corank of a graph G is the maximum possible corank over all AS(G;F). If (G1,G2) is a (?2)-separation, we give a formula which relates the maximum corank of G to the maximum corank of some small variations of G1 and G2.  相似文献   

18.
19.
Let (X,L) be a polarized manifold of dimension n defined over the field of complex numbers. In this paper, we treat the case where n=3 and 4. First we study the case of n=3 and we give an explicit lower bound for h0(KX+L) if κ(X)≥0. Moreover, we show the following: if κ(KX+L)≥0, then h0(KX+L)>0 unless κ(X)=− and h1(OX)=0. This gives us a partial answer of Effective Non-vanishing Conjecture for polarized 3-folds. Next for n=4 we investigate the dimension of H0(KX+mL) for m≥2. If n=4 and κ(X)≥0, then a lower bound for h0(KX+mL) is obtained. We also consider a conjecture of Beltrametti-Sommese for 4-folds and we can prove that this conjecture is true unless κ(X)=− and h1(OX)=0. Furthermore we prove the following: if (X,L) is a polarized 4-fold with κ(X)≥0 and h1(OX)>0, then h0(KX+L)>0.  相似文献   

20.
The chromatic number of the product of two 4-chromatic graphs is 4   总被引:1,自引:0,他引:1  
For any graphG and numbern≧1 two functionsf, g fromV(G) into {1, 2, ...,n} are adjacent if for all edges (a, b) ofG, f(a)g(b). The graph of all such functions is the colouring graph ℒ(G) ofG. We establish first that χ(G)=n+1 implies χ(ℒ(G))=n iff χ(G ×H)=n+1 for all graphsH with χ(H)≧n+1. Then we will prove that indeed for all 4-chromatic graphsG χ(ℒ(G))=3 which establishes Hedetniemi’s [3] conjecture for 4-chromatic graphs. This research was supported by NSERC grant A7213  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号