共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalano JG Park C Zhang Z Fenter P 《Langmuir : the ACS journal of surfaces and colloids》2006,22(10):4668-4673
Understanding the interaction of water with metal oxide surfaces is important to a diverse array of fields and is essential to the interpretation of surface charging and ion adsorption behavior. High-resolution specular X-ray reflectivity was used to determine the termination of and water adsorption on the alpha-Al2O3 (012)-aqueous solution interface. Interference features in the reflectivity data were used to identify the likely termination, consisting of a full Al2O3 layer plus an additional oxygen layer that completes the coordination shell of the upper aluminum site. This was further investigated through a model-independent inversion of the data using an error correction algorithm, which also revealed that there are two sites of adsorbed water above the surface. Characteristics of these two water sites were quantified through a model-dependent structural refinement, which also revealed additional layering in the interfacial water that gradually decays toward disordered bulk water away from the surface. Although the termination observed in this study differs from that assumed in past studies of surface charging, the density of key surface functional groups is unchanged, and thus, predictions of surface charging behavior are unchanged. As the pH(pzc) of this surface has yet to be modeled accurately, a full 3-dimensional surface structural analysis based on the termination observed in this study is needed so that the effects of surface functional group bond length changes on the pK(a) values can be incorporated. Consideration of the termination and sites of water adsorption suggest that singly coordinated oxygen groups will be the primary sites of ion adsorption on this surface. 相似文献
2.
A study of competitive adsorption of Ca(2+) and Zn(II) ions at the monodispersed SiO(2)/electrolyte solution interface is presented. Influence of ionic strength, pH, and presence of other ions on adsorption of Ca(2+) and Zn(II) in the mentioned system are investigated. zeta potential, surface charge density, adsorption density, pH(50%), and DeltapH(10-90%) parameters for different concentrations of carrying electrolyte and adsorbed ions are also presented. A high concentration of zinc ions shifts the adsorption edge of Ca(2+) ions adsorbed from solutions with a low initial concentration at the SiO(2)/NaClO(4) solution interface to the higher pH values. This effect disappears with a concentration increase of calcium ions. The presence of Ca(2+) ions in the system slightly affects the adsorption of zinc ions on SiO(2), shifting the adsorption edge toward lower pH values and thereby increasing the adsorption slope. 相似文献
3.
M. Kosmulski 《Journal of Radioanalytical and Nuclear Chemistry》1987,118(3):209-216
Alkali metal ions are adsorbed on controlled porous glasses from basic solutions. Narrow porous glasses show a relatively high selectivity with adsorption decreasing in the series Cs, K, Na, Li. 相似文献
4.
螯合吸附材料PAO/SiO2对重金属离子的螯合吸附行为 总被引:2,自引:0,他引:2
将丙烯腈接枝聚合在微米级硅胶微粒表面,经偕胺肟化转变,制得了接枝有聚偕胺肟(PAO)的复合型螯合吸附材料PAO/SiO2。本文重点考察了螯合吸附材料PAO/SiO2对几种重金属离子的螯合吸附行为,深入地研究了吸附机理。研究结果表明,偕胺肟基团与重金属离子之间的静电作用与配位螯合作用的协同,导致PAO/SiO2对重金属离子产生强的螯合吸附作用。在可抑制金属离子水解的pH范围内,介质的pH值越高,PAO/SiO2的螯合吸附能力越强;PAO/SiO2对性质不同的金属离子的吸附性能是有差别的,吸附容量的顺序为Cu2+Ni2+Pb2+Cd2+。 相似文献
5.
To describe diffusion-controlled adsorption, the diffusion equation is solved under different initial and boundary conditions
by means of a Laplace transformation. By solving this equation, it has been found that the solution, which Ward and Tordai
used, is only applicable for x>0; therefore, it is incorrect if the derivation is made at x = 0. Ward and Tordai did not notice this and the first derivation was made at x = 0 in order to get the dynamic surface adsorption, Γ(t). In this paper, an accurate solution, which is applicable for x≥ 0, is given and the expression for Γ(t) is obtained. Furthermore the relationship between the dynamic surface tension and Γ(t) is derived. As an example, the dynamic surface tensions of an aqueous octyl-β-d-glucopyranosid solution were measured by means of the maximum bubble pressure method. By using the derived theory it has
been proved that the controlling mechanism of the adsorption process of this surfactant at the long-time-adsorption limits
changes as a function of the bulk concentration; only at dilute concentration is it controlled by diffusion.
Received: 26 July 1999/Accepted in revised form: 16 September 1999 相似文献
6.
Ion hydration at a solid surface ubiquitously exists in nature and plays important roles in many natural processes and technological applications. Aiming at obtaining a microscopic insight into the formation of such systems and interactions therein, we have investigated the hydration of alkali metal ions at a prototype surface-graphite (0001), using first-principles molecular dynamics simulations. At low water coverage, the alkali metal ions form two-dimensional hydration shells accommodating at most four (Li, Na) and three (K, Rb, Cs) waters in the first shell. These two-dimensional shells generally evolve into three-dimensional structures at higher water coverage, due to the competition between hydration and ion-surface interactions. Exceptionally K was found to reside at the graphite-water interface for water coverages up to bulk water limit, where it forms an "umbrellalike" surface hydration shell with an average water-ion-surface angle of 115 degrees . Interactions between the hydrated K and Na ions at the interface have also been studied. Water molecules seem to mediate an effective ion-ion interaction, which favors the aggregation of Na ions but prevents nucleation of K. These results agree with experimental observations in electron energy loss spectroscopy, desorption spectroscopy, and work function measurement. In addition, the sensitive dependence of charge transfer on dynamical structure evolution during the hydration process, implies the necessity to describe surface ion hydration from electronic structure calculations. 相似文献
7.
The transfer of Li+, Na+, K+ and Cs+ from water to nitrobenzene at their interface as facilitated by benzo-12-crown-4, benzo-15-crown-5, 4′-methylbenzo-15-crown-5 and benzo-18-crown-6 was studied by cyclic voltammetry. The mechanism of the transfer process was discussed and the stability constants of the complexes formed in nitrobenzene were determined. 相似文献
8.
The growth of ordered filamentous carbon, catalytically generated from the decomposition of ethylene, has been studied over the temperature range 673-898 K using an 11% w/w Ni/SiO2 catalyst doped to varying degrees (0.1-9.3% w/w) with a range of alkali metal bromides. The effect of these alkali metal/halogen adatoms in promoting/inhibiting carbon growth has been assessed and variations in the associated carbon structural characteristics have been examined. The introduction of Li consistently promoted filamentous carbon growth (where 723 K相似文献
9.
采用共沉淀法制备了高钛含量的复合氧化物TiO2/SiO2.用BET、XRD、FT-IR和正胺吸附等分析手段,研究了煅烧温度对TiO2/SiO2表面酸量的影响.研究发现,随着煅烧温度的升高,TiO2/SiO2表面羟基密度、比表面积逐渐减少,TiO2晶粒尺寸变大,造成TiO2/SiO2表面酸量降低.当煅烧温度达到600℃到800℃之间,表面酸量基本不再改变. 相似文献
10.
The effect of cesium, potassium, sodium, and lithium cations on the adsorption of natural guar gum onto quartz was investigated. The role of these ions was analyzed in terms of their water structure-making or -breaking capabilities. In the presence of structure makers (Na+, Li+) the polymer adsorption density did not change compared to the adsorption levels observed in distilled water. However, in dilute solutions (0.01 N) of structure-breaking cations (Cs+, K+) the adsorption density of guar gum significantly increased, with potassium and cesium producing the same adsorption densities of the polymer. The resulting colloidal aggregation/dispersion equilibria in the quartz-guar gum system were discussed and mechanisms of guar gum-quartz interactions were also suggested. Assuming hydrogen bonding to be the driving adsorption mechanism, it was proposed that guar gum molecules compete with water for silanol surface sites. Structure-breaking cations disturb the interfacial water structure around the quartz particles thus allowing the polymer to more closely approach the quartz surface and interact with the surface groups. 相似文献
11.
12.
Based on the adsorption of Triton X-100 on silica/water and silica/cyclohexane interfaces and the adsorption of Triton X-305 on silica/water interface, two adsorption models have been proposed. On silica/cyclohexane interface, the adsorption of Triton X-100 is monomolecular layer. The molecules in the monolayer are presumed to be attached to the silica surface by their EO chain such that their hydrocarbon chain are exposed to the cyclohexane phase. On silica/water interface, the adsorption of Triton X-100 or Triton X-305 is bimolecular layer. The surfactant molecules orientated in the first layer are similar with that on the silica/cyclohexane interface. The molecules in the second layer are postulated to adsorb on those of the first in the opposite orientation, with EO chain directed toward the adsorption medium. The contact angle of quartz-water-cyclohexane (θW) as a function of the concentration of Triton X-100 and Triton X-305 in water has been measured with quartz plate employing the captive drop (cyclohexane) technique. The observed θW (measured through water) rose from < 10° to a maximum of about 120° for Triton X-100 and of about 40° for Triton X-305 as the concentration of surfactant in water increased, and then fell, as the concentration increased further. The results are consistent with the proposed adsorption models. 相似文献
13.
López Valdivieso A Reyes Bahena JL Song S Herrera Urbina R 《Journal of colloid and interface science》2006,298(1):1-5
The effect of temperature and pH on the zeta potential of alpha-Al2O3 and adsorption of fluoride ions at the alpha-Al2O3/aqueous solution interface has been investigated through electrophoretic mobility measurements and adsorption studies, to delineate mechanisms involved in the removal of fluoride ions from water using alumina as adsorbent. When the temperature increases from 10 to 40 degrees C, the pH of the point of zero charge (pH(pzc)) shifts to smaller values, indicating proton desorption from the alumina surface. The pH(pzc) increases linearly with 1/T, which allowed estimation of the standard enthalpy change for the surface-deprotonation process. Fluoride ion adsorption follows a Langmuir-type adsorption isotherm and is affected by the electric charge at the alpha-Al2O3/aqueous solution interface and the surface density of hydroxyl groups. Such adsorption occurs through an exchange between fluoride ions and surface-hydroxyl groups and it depends on temperature, pH, and initial fluoride ion concentration. At 25 and 40 degrees C, maximum fluoride adsorption density takes place between pH 5 and 6. Increasing the temperature from 25 to 40 degrees C lowers the adsorption density of fluoride. 相似文献
14.
Seven systems of more than 60 compounds with possible inhibiting properties are investigated. Several methods are used: electrochemical,
gravimetric, XPS, and SEM analyses. The inhibition efficiency Z is related to the chemical structure of inhibitors (sequences
of compounds with regard to Z are found), their electronic structure, the surface area of the inhibiting molecule, and the
structure and composition of the metal/solution interface (impedance, adsorption equilibrium parameters, etc.). The most efficient
of the investigated inhibitors have Z = 94–99%. Conclusions are drawn which allow identification of compounds with prognosticated
inhibiting action.
Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 11, pp. 1352–1364.
Based on the report delivered at the 8th International Frumkin Symposium “Kinetics of the Electrode Processes,” October 18–22,
2005, Moscow.
The text was submitted by the authors in English. 相似文献
15.
Zarbakhsh A Querol A Bowers J Yaseen M Lu JR Webster JR 《Langmuir : the ACS journal of surfaces and colloids》2005,21(25):11704-11709
Adsorption of water-soluble, zwitterionic n-hexadecylphosphorylcholine (C(16)PC) amphiphiles has been examined at the hexadecane-aqueous solution interface using neutron reflectivity (NR) and interfacial tension measurements. The results of both methods indicate that the limiting area per surfactant molecule at the interface at the critical micelle concentration (cmc) is 40 +/- 5 Angstroms(2). In the NR measurements, two isotopic contrasts have been employed to determine the adsorption isotherm and to explore the structure of the interfacial region. Single-layer model fitting to both isotopic contrasts was only possible for the single sub-cmc concentration studied, where a film thickness of 60 +/- 5 Angstroms was obtained; consistent single-layer model fits to both contrasts for concentrations greater than the cmc were not possible, leading to the requirement of a two-layer model with an overall film thickness close to 60 +/- 2 Angstroms. This film thickness is appreciably greater than the fully extended C(16)PC molecular length and cannot be explained purely in terms of thermal broadening. A further result is that the reflectivity data indicate that, as the C(16)PC concentration increases, the amount of water on the hexadecane side of the interfacial region increases, in contrast to intuitive expectation. These findings are interpreted by conjecturing a structural model in which a trilayer of C(16)PC molecules is formed at the interface with the water concentrated in the region occupied by the headgroups. 相似文献
16.
Removal of metal ions from aqueous solution by adsorption on the natural adsorbent CACMM2. 总被引:3,自引:0,他引:3
G Carrillo-Morales M M Dávila-Jiménez M P Elizalde-González A A Peláez-Cid 《Journal of chromatography. A》2001,938(1-2):237-242
The adsorption of Cd2+, Cr3+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ from aqueous solution was used to study the sorption properties of the adsorbent CACMM2 extracted from a cactus. Quantitation of the cation concentrations was performed by HPLC with diode array detection using on-column complex formation with 8-hydroxyquinoline. Removal degree from 100 mg M(n+) l(-1) solutions followed the series: Cu>Cd>Fe>Ni>Cr>Zn. Henry and Freundlich constants were determined since adsorption did not reach saturation plateaux in the studied concentration interval. Sorption of chromium by CACMM2 was stronger than the sorption onto lignin, calcium oxalate and cellulose up to 1,000 mg Cr3+ l(-1). Copper and iron were desorbed to a greater extent, while lead adsorption was practically irreversible. CACMM2 was able to remove more than 83% of chromate in a freshly prepared and exhausted chromate commercial solution. 相似文献
17.
18.
19.
对介孔SiO2及硫酸根促进的SiO2样品进行了原位吡啶吸附红外光谱测试,分别建立了硫酸根促进前后的SiO2表面原子簇模型,用密度泛函理论对其吡啶吸附行为进行了计算,分析了SO2-4/SiO2表面酸性产生的机理. 实验和计算结果表明, SO2-4/SiO2表面不存在Lewis酸中心,原位红外谱图中表征Lewis酸性的特征峰对应于氢键吸附吡啶的环振动,这种氢键作用因SiO2表面的硫酸根促进而得到加强. HSO-4螯合结构为SO2-4/SiO2表面Br(φ)nsted酸中心,其酸强度强于表面磺酸基团修饰的介孔SiO2材料SO3H-MSU, 而弱于HZSM-5. SO2-4/SiO2的酸催化活性源于其表面的Br(φ)nsted酸性. 相似文献
20.
The hydration of the alkali metal ions in aqueous solution has been studied by large angle X-ray scattering (LAXS) and double difference infrared spectroscopy (DDIR). The structures of the dimethyl sulfoxide solvated alkali metal ions in solution have been determined to support the studies in aqueous solution. The results of the LAXS and DDIR measurements show that the sodium, potassium, rubidium and cesium ions all are weakly hydrated with only a single shell of water molecules. The smaller lithium ion is more strongly hydrated, most probably with a second hydration shell present. The influence of the rubidium and cesium ions on the water structure was found to be very weak, and it was not possible to quantify this effect in a reliable way due to insufficient separation of the O-D stretching bands of partially deuterated water bound to these metal ions and the O-D stretching bands of the bulk water. Aqueous solutions of sodium, potassium and cesium iodide and cesium and lithium hydroxide have been studied by LAXS and M-O bond distances have been determined fairly accurately except for lithium. However, the number of water molecules binding to the alkali metal ions is very difficult to determine from the LAXS measurements as the number of distances and the temperature factor are strongly correlated. A thorough analysis of M-O bond distances in solid alkali metal compounds with ligands binding through oxygen has been made from available structure databases. There is relatively strong correlation between M-O bond distances and coordination numbers also for the alkali metal ions even though the M-O interactions are weak and the number of complexes of potassium, rubidium and cesium with well-defined coordination geometry is very small. The mean M-O bond distance in the hydrated sodium, potassium, rubidium and cesium ions in aqueous solution have been determined to be 2.43(2), 2.81(1), 2.98(1) and 3.07(1) ?, which corresponds to six-, seven-, eight- and eight-coordination. These coordination numbers are supported by the linear relationship of the hydration enthalpies and the M-O bond distances. This correlation indicates that the hydrated lithium ion is four-coordinate in aqueous solution. New ionic radii are proposed for four- and six-coordinate lithium(I), 0.60 and 0.79 ?, respectively, as well as for five- and six-coordinate sodium(I), 1.02 and 1.07 ?, respectively. The ionic radii for six- and seven-coordinate K(+), 1.38 and 1.46 ?, respectively, and eight-coordinate Rb(+) and Cs(+), 1.64 and 1.73 ?, respectively, are confirmed from previous studies. The M-O bond distances in dimethyl sulfoxide solvated sodium, potassium, rubidium and cesium ions in solution are very similar to those observed in aqueous solution. 相似文献