首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have studied the densities, kinetics, and equilibrium degree of swelling in a number of different solvents of poly(carbonate urethane)/poly(methyl methacrylate) and poly(carbonate urethane)/poly(vinyl pyridine) interpenetrating polymer networks (IPN's). The kinetics of solvent uptake are often anomalous. The equilibrium extent of swelling reflects, among other factors, the number of phases present. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Polystyrene/polystyrene latex interpenetrating polymer networks (IPNs) were prepared by seeded emulsion polymerization of styrene–divinylbenzene mixtures in crosslinked monodisperse polystyrene particles. The resulting latexes comprised uniform nonspherical particles, e.g., ellipsodal and egg-like singlets, symmetry and asymmetric doublets, and ice cream cone-like and popcorn-like multiplets. The nonspherical particles, which were formed by separation of the second-stage monomer from the crosslinked seed network during swelling and polymerization, are excellent models for studying phase separation in IPN's. The degree of phase separation increased with increasing degree of crosslinking of the seed particles, monomer/polymer swelling ratio, polymerization temperature, and seed particle size, and with decreasing divinylbenzene concentration in the swelling monomer. The results were consistent with a thermodynamic analysis based on the elastic-retractile force of the polymer network, the monomer/polymer mixing force, and interfacial tension force.  相似文献   

3.
Blending brittle polymer particles in a ductile polymer matrix is a new way to obtain toughened plastics. Although the nylon-6/poly(acrylonitrile-co-styrene) (SAN) system is a ductile/brittle combination, the blend does not result in a toughened plastic. We have investigated the effect of adding a small amount of a third component, poly(styrene-co-maleic anhydride) (SMA), to the nylon/SAN system. SMA significantly improves the tensile and impact strength of the blend. Morphological observations indicate a finer dispersion of the SAN particles when SMA is present in the blend. The improved dispersion is attributed to the formation of nylon-SMA graft copolymer, and infrared analysis supports this supposition. That is, a “compatibilizer” seems to be produced during melt mixing of the ternary system. The role that the compatibilizer plays in improving the stress transfer in the two-phase system and its potential to induce a brittle-ductile transition of the glassy SAN particles are considered to explain the toughening mechanism.  相似文献   

4.
Swelling of a sulfamide polymer of UPM brand in a series of alcohols was studied gravimetrically. Correlation analysis with multiparameter equations showed that solvation processes exert a decisive effect on the swelling.  相似文献   

5.
This work deals with the application of the static light scattering (SLS) model of Vrij (VM) for the characterization of a spherical polydisperse concentrated polymer particle system. This model is the exact solution for the SLS of such mixture of particles in the Percus–Yevick approximation. The analyzed polymer particle samples are obtained by solution polymerization of isobornyl methacrylate in polyisobutylene. At the end of the polymerization, as a result of phase separation, a particle system of micrometer sized particles with a moderate distribution of sizes and a volume fraction between 5 and 10% is formed. The SLS data were also analyzed using the local monodisperse approximation (LMA), a well‐known approximation to the model of Vrij. As expected, the estimations with the VM gave better results than those performed with the LMA model for the parameters related to the shape of the particle size distribution as compared with independent determinations of these quantities obtained from scanning electron microscopy micrographs. However, the main motivation to use the more rigorous model seems to be the fact that the volume fraction of particles can be extracted from the data even when relative SLS measurements are used. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 958–963, 2010  相似文献   

6.
A facile route for in situ synthesis of Co and Ni nanoparticles in a preorganized polyacrylamide gel is reported. Metal-polymer composites were prepared by gamma-irradiation at room temperature. The Co nanoparticles were roughly 3-5 nm in size and were stable in the polymer matrix in the presence of air. The presence of Co and Ni nanoparticles was established by their ability to transfer an electron to methyl viologen {paraquat: 1,1'-dimethyl 4,4'-dipyridinium dichloride; MV(2+) (Cl(-))(2)}. The Co and Ni nanoparticles were probed for their magnetic characteristics by a superconducting quantum interferometer device (SQUID) magnetometer and display a low superparamagnetic blocking temperature T(B) of about 13 and 10 K, respectively. The field-dependent magnetic behavior below T(B) displays the standard features corresponding to superparamagnetism, as expected for very small Co and Ni crystallites. This also suggests that particles are polycrystalline in nature.  相似文献   

7.
A possible model for the formation of interpenetrating polymer networks is suggested. Phase separation is assumed to be faster than gelation. This implies that domains rich in either component grow first until late stages of spinodal decomposition. In these domains, short linear chains are crosslinked, leading to large branched macromolecules. Growth of the domains is slowed down by the presence of crosslinked polymers. It is assumed that it is stopped when the sizes of the domains and of the branched macromolecules are comparable. The resulting domains are significantly larger than the average distance between crosslinks. These results are supported by recent neutron scattering results on a poly(carbonate-urethane)/polyvinyl pyridine interpenetrating network. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1507–1512, 1998  相似文献   

8.
The emulsifier-free core–shell interpenetrating polymer network (IPN) fluorinated polyacrylate latex particles with fluorine rich in shell were prepared by emulsifier-free seeded emulsion polymerization with water as the reaction medium. The fluorinated copolymer could be fixed on the particle surface due to the formation of interpenetrating polymer network. The resultant core–shell particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS) analysis, Fourier transform infrared (FTIR) spectrometry, X-ray photoelectron spectroscopy (XPS) analysis and thermogravimetric analysis (TGA). The core–shell particles possessed very narrow monomodal particle size distributions. XPS analysis of the latex film displayed that perfluoroalkyl groups had the tendency to enrich at surface and there was a gradient concentration of fluorine in the structure of the latex film from the film–air interface to the film–glass interface. In addition, compared with the latex film of crosslinked polyacrylate prepared under the same condition, the emulsifier-free core–shell IPN-fluorinated polyacrylate latex film showed better thermal stability, higher contact angle and lower water uptake.  相似文献   

9.
The UV-visible (UVV) technique was used to monitor latex film formation in a soft polymer matrix. Various film samples were prepared by increasing the amount of poly(methyl methacrylate) (PMMA) particles in a poly(isobutylene) (PIB) matrix. These samples were then annealed above the glass transition temperature to promote latex film formation. Transmitted photon intensities, Itr, were measured for each film. It is observed that Itr decrease as the latex content is increased, which was explained by the increase in scattered light intensity, Isc. The drastic increase in Isc above a certain latex content is attributed to the site percolation of latex particles in the PIB matrix. The percolation threshold and the critical exponent were measured and found to be 0.3 and 0.4, respectively. The increase in Itr by annealing of film samples above Tg was explained with the void closure process below 0.8 occupation probability. When the film is occupied completely with the latex particles, interdiffusion of polymer chains was observed. Viscous flow and chain diffusion activation energies were determined and found to be 8 and 51 kcal/mol, respectively.  相似文献   

10.
The addition of a small amount of a poor solvent impurity (methanol) to a theta solvent (cyclohexane) is found to cause appreciable swelling (≈30% increase of the average brush height) in a model end‐grafted polystyrene (PS) brush layer. This unusual type of swelling is not observed if octadecyltrichlorosilane (OTS) is first grafted to the portion of the silicon substrate uncovered by the grafting end‐groups of the PS chains. Brush swelling in the absence of OTS surface protection is interpreted as arising from a segregation of methanol to the solid substrate and the resulting modification of the polymer–surface interaction. We also observe that the addition of a small amount of methanol to an adsorbed PS layer exposed to cyclohexane causes rapid film delamination from the silicon substrate. Together these observations imply a strong influence of surface active impurities on the structure and adhesive stability of polymer layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4126–4131, 2004  相似文献   

11.
A series of complexes of styrene-4-vinylpyridine copolymers (SVP) or poly(4-vinylpyridine) (PVP) and transition metal chlorides were prepared. The transition metal-polymer complexes were used to prepare the ultra-fine metallic particles dispersed in polymer matrix by chemical reduction. The effects of the ion concentration and the polymer backbone on the size of these metal particles were studied. It was found that the transition metal ions may coordinate to pyridine groups in precursor polymers after blending. Upon reduction, the metal ions were transformed into the corresponding metal particles in the range of nanometer scale. The protective polymers take an important role to prevent metal particles from oxidation and excessive aggregation.  相似文献   

12.
We have studied the behaviors of a poly(methyl methacrylate) (PMMA) chains anchored to polystyrene particles at air/water and oil/water interfaces to recognize the roles of oil molecules in the PMMA property at the interfaces. Through the comparison of π-A isotherms we found two aspects of unique structural and rheological characteristics observed in PMMA-grafted polystyrene latex (PSL-PMMA) monolayer system in common. (1) The π-A isotherms showed surface pressure increase at larger occupied area compared to the PSL-PMMA size in solution at three different types of interfaces in most cases. (2) Compressional modulus, C s ?1, obtained by π-A isotherm analysis for PSL-PMMA at interfaces, showed the tendency to decrease with molecular weight of PMMA. This is opposite to that of PMMA homopolymer at interfaces. The effect of oil molecules on PSL-PMMA system at interfaces are found both in the difference of occupied area and C s ?1. The occupied areas were larger for the isotherms at the oil/water interfaces than those at the air/water interface in most cases, which suggested the reduced attractive interactions between anchored polymers by oil molecules. On the other hand, C s ?1 of PMMA monolayers is strongly dependent on the constituents of the interface and the order of C s ?1 is air/water?>?decane/water?>?dibutyl ether/water interfaces. The difference between oil species was not explained only by PMMA/oil interaction in bulk, but we suggested that interfacial tension of oil/water interface affects the miscibility of oil molecules with PMMA to cause higher miscibility between PMMA and dibutyl ether at the oil/water interfaces.  相似文献   

13.
An interpenetrating polymer network, IPN, is defined as a combination of two or more polymers in network form, at least one of which is polymerized and/or crosslinked in the immediate presence of the other(s). The synthesis, morphology and mechanical properties of recent works are reviewed, with special emphasis on dual phase continuity, and the number of physical entanglements that arise in homo-IPNs. The concepts of phase diagrams are applied, especially to simultaneous interpenetrating network phase separations and gelations. Recent engineering applications are discussed.  相似文献   

14.
The topological entanglements between subchains of two interpenetrating polymer networks are described in the simplest approximation supposing that the primitive path of each subchain is influenced due to the shift of one network relatively to the other. The entanglement contribution to the free energy of the networks is shown to behave as 1/q2 for the state with deviation from uniform densities with the wave vector of order q. This contribution is shown to cause the microphase type of segregation.  相似文献   

15.
Emulsion polymerized interpenetratingpolymer networks (IPN) of polyacrylate and polystyrene exhibit a power law relaxation over a wide frequency range. The response of the material to oscillatory shear, step sheaf strain and a constant stress can be described with a two parameter constitutive equation. The power law behavior was previously found in polymers at their critical state where molecular motions were correlated over large distances without intrinsic size or time scale.The effect of composition and crosslink density on the behavior of the material is studied. The behavior might be explained with the granular structure of the material.  相似文献   

16.
Polystyrene/polystyrene latex interpenetrating polymer networks (IPNs) were prepared by seeded emulsion polymerzation of styrene–divinylbenzene mixtures in crosslinked monodisperse polystyrene seed latexes. The resulting latexes comprised uniform nonspherical particles, which were formed by separation of the second-stage monomer from the crosslinked seed network during swelling and polymerization. The kinetics of phase separation were investigated by examining the changes in particle morphology using optical microscopy, which revealed that the phase separation was induced by the relaxation of the polymer chains before polymerization began and was enhanced by increased conversion. The thermodynamics of phase separation were investigated by analysis of the free-energy changes during swelling and polymerization, and the phase separation was described by a nucleation-and-growth mechanism. The results of this study have been applied to the design and synthesis of a series of uniform nonspherical particles of different morphology.  相似文献   

17.
The effects of compatibilizing additives (monomethacrylic ester of ethylene glycol (MEG) and oligo-urethane-dimethacrylate (OUDM)) on the kinetics of interpenetrating polymer network (IPN) formation based on cross-linked polyurethane and linear polystyrene and its influence on the microphase separation, viscoelastic and thermophysical properties have been investigated. It was established, that various amounts (3-10 mass%) of the additive MEG and 20 mass% OUDM introduced into the initial reaction system prevent microphase separation in the IPN. In the course of the reaction the system undergoes no phase separation up to the end of reaction, as follows from the light scattering data. The viscoelastic properties of modified IPN are changed in such a way that instead of two relaxation maxima characteristic of phase-separated system, only one relaxation maximum is observed, what is result of the formation of compatible IPN system. The position of this relaxation transition depends on the system composition and on the reaction conditions.  相似文献   

18.
It was found that amines were formed efficiently by the photolysis of O-acyloximes followed by hydrolysis in polystyrene films and the relationship between structures of O-acyloximes and yields of amines were investigated. O-phenylacetyl acetophenone oxime (PaApO), O-pivaloyl acetophenone oxime (PApO), and O-benzoyl acetophenone oxime (BApO) as monofunctional O-acyloximes and O,O′-succinyl diacetophenone oxime (SDApO) and O,O′-glutaryl diacetophenone oxime (GDApO) as bifunctional O-acyloximes were examined. The yields of amines for PaApO and SDApO under N2 were ca. 70%, which was the highest among O-acyloximes examined in this experiment. On the other hand, the yields for PApO, BApO, and GDApO were less than 15% and it was verified that the hydrogen abstraction by imino radicals via 6-membered cyclic intermediates resulted in the lowering of yields. Although the effect of oxygen under photolysis on the yields of amine for PaApO was negligible under 50% conversion of PaApO, the yield decreased with further increase in the conversion and was 50% at 90% conversion. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Heptacene (1) was generated by the photodecarbonylation of 7,16-dihydro-7,16-ethanoheptacene-19,20-dione (2) in a polymer matrix using a UV-LED lamp (395 +/- 25 nm). Compound 1 showed a long wavelength absorption band extending from 600 to 825 nm (lambdamax approximately 760 nm) and was found to be stable up to 4 h in the polymer matrix. However, irradiation of a solution of 2 in toluene produced only oxygen adducts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号