共查询到20条相似文献,搜索用时 15 毫秒
1.
[structure: see text] Benzotriazole forms complexes of different stoichiometries with amines and phenols. Four of them have been characterized by single-crystal X-ray diffraction. The trends of donor-acceptor hydrogen-bond distances between corresponding molecular entities in the different complexes are related to induction-mediated cooperativity effects. 相似文献
2.
Matthew G. Reeves Elodie Tailleur Peter A. Wood Mathieu Marchivie Guillaume Chastanet Philippe Guionneau Simon Parsons 《Chemical science》2021,12(3):1007
Crystal packing energy calculations are applied to the [Fe(PM-L)2(NCS)2] family of spin crossover (SCO) complexes (PM-L = 4-substituted derivatives of the N-(2-pyridylmethylene)-4-aminobiphenyl ligand) with the aim of relating quantitatively the cooperativity of observed SCO transitions to intermolecular interactions in the crystal structures. This approach reveals a linear variation of the transition abruptness with the sum of the magnitudes of the interaction energy changes within the first molecular coordination sphere in the crystal structure. Abrupt transitions are associated with the presence of significant stabilising and destabilising changes in intermolecular interaction energies. While the numerical trend established for the PM-L family does not directly extend to other classes of SCO complex in which the intermolecular interactions may be very different, a plot of transition abruptness against the range of interaction energy changes normalised by the largest change shows a clustering of complexes with similar transition abruptness. The changes in intermolecular interactions are conveniently visualised using energy difference frameworks, which illustrate the cooperativity pathways of an SCO transition.The abruptness of spin crossover (SCO) is related to intermolecular energy changes occurring over the course of an SCO transition. Crossover is abrupt when SCO-induced strain is accommodated synergistically in a few key interactions. 相似文献
3.
Cody B. van Beek Nicolaas P. van Leest Martin Lutz Sander D. de Vos Robertus J. M. Klein Gebbink Bas de Bruin Daniël L. J. Broere 《Chemical science》2022,13(7):2094
Several metalloenzymes, including [FeFe]-hydrogenase, employ cofactors wherein multiple metal atoms work together with surrounding ligands that mediate heterolytic and concerted proton–electron transfer (CPET) bond activation steps. Herein, we report a new dinucleating PNNP expanded pincer ligand, which can bind two low-valent iron atoms in close proximity to enable metal–metal cooperativity (MMC). In addition, reversible partial dearomatization of the ligand''s naphthyridine core enables both heterolytic metal–ligand cooperativity (MLC) and chemical non-innocence through CPET steps. Thermochemical and computational studies show how a change in ligand binding mode can lower the bond dissociation free energy of ligand C(sp3)–H bonds by ∼25 kcal mol−1. H-atom abstraction enabled trapping of an unstable intermediate, which undergoes facile loss of two carbonyl ligands to form an unusual paramagnetic (S = ) complex containing a mixed-valent iron(0)–iron(i) core bound within a partially dearomatized PNNP ligand. Finally, cyclic voltammetry experiments showed that these diiron complexes show catalytic activity for the electrochemical hydrogen evolution reaction. This work presents the first example of a ligand system that enables MMC, heterolytic MLC and chemical non-innocence, thereby providing important insights and opportunities for the development of bimetallic systems that exploit these features to enable new (catalytic) reactivity.The PNNP expanded pincer ligand can bind two iron centers in close proximity and display heterolytic and homolytic metal–ligand cooperativity. 相似文献
4.
5.
Rabilloud F 《The Journal of chemical physics》2005,122(13):134303
The low lying electronic states of 3d transition-metal-benzene complexes MBz (with M=Sc, V, and Ni) have been investigated by performing complete active space self-consistent field and multireference configuration interaction calculations. Geometries, energetics, and electronic structure are presented and discussed. The results concerning both the geometry and the spin multiplicity of the ground-state contrast with those obtained from previous calculations based on density functional theory. The disagreements between single-reference-based approaches and multireference methods in the characterization of neutral 3d-metal complexes are discussed. 相似文献
6.
7.
The replacing of CH(2)Cl(2) solvent molecules with their deuterated analogues in a Co complex undergoing valence-tautomeric interconversion drastically modifies its magnetic properties giving rise to a thermal hysteresis. 相似文献
8.
Daniil O. Soloviev Fergal E. Hanna Maria Cristina Misuraca Christopher A. Hunter 《Chemical science》2022,13(40):11863
Formation of a H-bond with an amide carbonyl oxygen atom increases the strength of subsequent H-bonds formed by the amide NH, due to polarisation of the bond. The magnitude of this effect has been quantified by measuring association constants for the formation of 1 : 1 complexes of 2-hydroxylbenzamides with tri-n-butyl phosphine oxide. In 2-hydroxybenzamides, there is an intramolecular H-bond between the phenol OH group and the carbonyl oxygen atom. Comparison of the association constants measured for compounds with and without the 2-hydroxy group allows direct quantification of the effect of the intramolecular H-bond on the H-bond donor properties of the amide NH group. Substituents were used to modulate the strength of the intramolecular and intermolecular H-bonds. The presence of an intramolecular H-bond increases the strength of the intermolecular H-bond by more than one order of magnitude in n-octane solution. The increase in the H-bond donor parameter used to describe the amide NH group is directly proportional to the H-bond donor parameter of the phenol OH group that makes the intramolecular H-bond. These polarisation effects will lead to substantial cooperativity in complex systems that feature networks of non-covalent interactions, and the measurements described here provide a quantitative basis for understanding such phenomena.Formation of an intramolecular phenol-amide H-bond leads to a dramatic increase in the H-bond donor strength of the amide NH group. Polarisation of the amide group is directly proportional to the polarity of the phenol H-bond donor. 相似文献
9.
10.
Qi Ying Xia He Ming Xiao Xue Hai Ju Xue Dong Gong 《International journal of quantum chemistry》2003,94(5):279-286
Density functional theory at the B3LYP level with the 6‐311G** basis set is performed to calculate the systems consisting of up to four hydrazoic acid molecules. The dimers are found to exhibit cyclic and chain structures with N … H contacts at ca. 2.1–2.7 Å. However, there are only cyclic structures with N … H contacts at ca. 2.0–2.3 Å and 2.0–2.1 Å in the trimer and tetramer, respectively. Hydrogen bond distances in the trimer and tetramer are shorter than those in the cyclic dimer as a result of the stronger interaction between molecules. The contribution of cooperative effect to the interaction energy is significant. After the correction of the basis set superposition error and zero‐point energy, the binding energies are ?10.69, ?29.34, and ?54.26 kJ·mol?1 for the most stable dimer, trimer, and tetramer, respectively. The calculated IR shifts for N? H stretching mode increase with the size of the cluster growths, reaching more than 200 cm?1 in the tetramer. For the most stable clusters, the transition from the monomer to dimer, dimer to trimer, and trimer to tetramer involve changes of ?14.40, ?25.68, and ?31.88 kJ·mol?1 for the enthalpies at 298.15 K and 1atm, respectively. We also perform Mulliken populations analysis and find the Mulliken populations on intermolecular N … H increasing in the sequence of the dimer, trimer, and tetramer. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 279–286, 2003 相似文献
11.
Hogben HJ Sprafke JK Hoffmann M Pawlicki M Anderson HL 《Journal of the American Chemical Society》2011,133(51):20962-20969
Complexes of zinc porphyrin oligomers with multivalent ligands can be denatured by adding a large excess of a monodentate ligand, such as quinuclidine. We have used denaturation titrations to determine the stabilities of the complexes of a cyclic zinc-porphyrin hexamer with multidentate ligands with two to six pyridyl coordination sites. The corresponding complexes of linear porphyrin oligomers were also investigated. The results reveal that the stepwise effective molarities (EMs) for the third through sixth intramolecular coordination events with the cyclic hexamer are extremely high (EM = 10(2)-10(3) M), whereas the values for the linear porphyrin oligomers are modest (EM ≈ 0.05 M). The speciation profiles for the denaturation reactions demonstrate that intermediate species are not significantly populated and that these equilibria are well described by a highly cooperative two-state model. 相似文献
12.
First-principles calculations based on the generalized gradient approximation to the density functional theory are performed to explore the global geometries, ground-state spin multiplicities, relative stabilities, and energetics of neutral and anionic V(n)(Bz)(m) (n=1-3, m=1-4, with n相似文献
13.
Maslen PE 《The Journal of chemical physics》2005,122(1):14104
Scaled internal coordinates are introduced for use in the geometry optimization of systems composed of multiple fragments, such as solvated molecules, clusters, and biomolecular complexes. The new coordinates are related to bond lengths, bond angles and torsion angles by geometry-dependent scaling factors. The scaling factors serve to expedite the optimization of complexes containing outlying fragments, without hindering the optimization of the intramolecular degrees of freedom. Trial calculations indicate that, at asymptotic separations, the scaling factors improve the rate of convergence by a factor of 4 to 5. 相似文献
14.
Though molecular simulation of proteins has made notable contributions to the study of protein folding and kinetics, disagreement between simulation and experiment still exists. One of the criticisms levied against simulation is its failure to reproduce cooperative protein folding transitions. This weakness has been attributed to many factors such as a lack of polarizability and adequate capturing of solvent effects. This work, however, investigates how increasing the number of proteins simulated simultaneously can affect the cooperativity of folding transitions--a topic that has received little attention previously. Two proteins are studied in this work: phage T4 lysozyme (Protein Data Bank (PDB) ID: 7LZM) and phage 434 repressor (PDB ID: 1R69). The results show that increasing the number of proteins molecules simulated simultaneously leads to an increase in the macroscopic cooperativity for transitions that are inherently cooperative on the molecular level but has little effect on the cooperativity of other transitions. Taken as a whole, the results identify one area of consideration to improving simulations of protein folding. 相似文献
15.
We describe the synthesis and characterization of C(2) symmetrical double chromophores, in which two identical chromophores are linked through ethylene glycol spacers of increasing lengths. The complexation ability of the trans stereopure form for each diastereoisomeric pair showed how the two chromophores, when the spacer unit is comprised of a diethylene or a triethylene glycol moiety, are able to interact in a positive way, stabilizing the resulting complexes when compared with single chromophore analogous compounds. 相似文献
16.
Burress CN Bodine MI Elbjeirami O Reibenspies JH Omary MA Gabbaï FP 《Inorganic chemistry》2007,46(4):1388-1395
As part of our efforts to discover simple routes to room-temperature phosphors, we have investigated the interaction of bis(pentafluorophenyl)mercury (1) or trimeric perfluoro-o-phenylene mercury (2) with selected arenes (naphthalene, biphenyl, and fluorene). Solution studies indicate that 2, unlike 1, quenches the fluorescence of naphthalene. When compared to 1, the high quenching efficiency of 2 may be correlated to the higher affinity that 2 displays for arenes as well as to more acute external heavy-atom effects caused by the three mercury atoms. In the crystal, the adducts [1.naphthalene], [1.biphenyl], [1.fluorene], and [2.fluorene] form supramolecular binary stacks in which the arene approaches the mercury centers of 1 or 2 to form Hg-C pi-interactions. Analysis of the electrostatic potential surfaces of the individual components supports the involvement of electrostatic interactions. The luminescence spectra of the adducts show complete quenching of the fluorescence and display heavy-atom-induced emission whose energies and vibronic progressions correspond to the phosphorescence of the respective pure arene. The phosphorescence lifetimes are shortened by 3 or 4 orders of magnitude when compared with those of the free arenes. Taken collectively, the structural, photophysical, and computational results herein suggest that the proximity of the three mercury centers serves to enhance the Lewis acidity of 2, which becomes a better acceptor and a more effective heavy-atom effect inducer than 1. 相似文献
17.
In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO∕S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, β(HRS) and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases. 相似文献
18.
Pandey R Ghosh S Mukhopadhyay S Ramasesha S Das PK 《The Journal of chemical physics》2011,134(4):044533
We report large quadratic nonlinearity in a series of 1:1 molecular complexes between methyl substituted benzene donors and quinone acceptors in solution. The first hyperpolarizability, β(HRS), which is very small for the individual components, becomes large by intermolecular charge transfer (CT) interaction between the donor and the acceptor in the complex. In addition, we have investigated the geometry of these CT complexes in solution using polarization resolved hyper-Rayleigh scattering (HRS). Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D=I(2ω,X,X)/I(2ω,Z,X) and D(')=I(2ω,X,C)/I(2ω,Z,C) in the laboratory fixed XYZ frame by detecting the second harmonic scattered light in a polarization resolved fashion. The experimentally obtained first hyperpolarizability, β(HRS), and the value of macroscopic depolarization ratios, D and D('), are then matched with the theoretically deduced values from single and double configuration interaction calculations performed using the Zerner's intermediate neglect of differential overlap self-consistent reaction field technique. In solution, since several geometries are possible, we have carried out calculations by rotating the acceptor moiety around three different axes keeping the donor molecule fixed at an optimized geometry. These rotations give us the theoretical β(HRS), D and D(') values as a function of the geometry of the complex. The calculated β(HRS), D, and D(') values that closely match with the experimental values, give the dominant equilibrium geometry in solution. All the CT complexes between methyl benzenes and chloranil or 1,2-dichloro-4,5-dicyano-p-benzoquinone investigated here are found to have a slipped parallel stacking of the donors and the acceptors. Furthermore, the geometries are staggered and in some pairs, a twist angle as high as 30° is observed. Thus, we have demonstrated in this paper that the polarization resolved HRS technique along with theoretical calculations can unravel the geometry of CT complexes in solution. 相似文献
19.
Five peptides, each containing 17 amino acids, have been completely geometrically optimized in their alpha-helical and beta-strand forms using a mixed DFT/AM1 procedure. B3LYP/D95** was used for the entire helical structures, while AM1 was initially used to optimize the side chains, followed by reoptimization at the DFT level. The energetic and structural results show (1) that the helices are favored over the strands by 29.5 to 37.4 kcal/mol; (2) that alkyl groups on the amino acid side chains favor helix formation even in the absence of solvent; (3) that C-H...O hydrogen bonds contribute to the relative stability of the helices that contain amino acids (val, leu and ile) with beta-hydrogens in their alkyl side chains; (4) that formation of these helices entails approximately 6.6 kcal/mol of strain within the backbone per hydrogen bond; and (5) that H-bond cooperativity is essential for the alpha-helix to become more stable than a corresponding beta-strand. This last observation strongly suggests that pairwise potentials are inadequate for modeling of peptides and proteins. 相似文献
20.
We investigate the primary, secondary, and vicinal hydrogen/deuterium (H/D) isotope effects on the geometry of the two intramolecular hydrogen bonds in porphycene. Multidimensional potential energy surfaces describing the anharmonic motion in the vicinity of the trans isomer are calculated for the different symmetric (HH/DD) and asymmetric (HD) isotopomers. From the solution of the nuclear Schr?dinger equation the ground-state wavefunction is obtained, which is further used to determine the quantum corrections to the classical equilibrium geometries of the hydrogen bonds and thus the geometric isotope effects. In particular, it is found that the hydrogen bonds are cooperative, that is, both expand simultaneously even in the case of an asymmetric isotopic substitution. The theoretical predictions compare favorably with NMR chemical-shift data. 相似文献