首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following a detailed study, a reversed-phase high performance liquid chromatographic method (HPLC) has been developed and validated for analysis of three bioactive alkaloids, matrine, sophoridine and oxymatrine, in Sophora flavescens Ait. HPLC separation of the alkaloids was performed on a Kromasil C(18) column and detected by ultraviolet absorbance at 208 nm. The column temperature was maintained at 40 degrees C. A mobile phase composed of 0.01 mol/L KH(2)PO(4) buffer-methanol-triethylamine in the ratios 94:6:0.01 (v/v) was found to be the most suitable for this separation at a fl ow-rate of 1.0 mL/min and enabled the baseline separation of the three analytes free from interferences with isocratic elution. The analysis time was 24 min per injection. The calibration was linear in the range of 0.2-120.0 micro g/mL for matrine, 0.2-115.2 micro g/mL for sophoridine and 0.2-110.4 micro g/mL for oxymatrine, respectively. For assaying Sophora Flavescens Ait. samples, the relative standard deviations were 2.0% for matrine, 2.8% for sophoridine and 1.8% for oxymatrine analysis. The average recoveries of matrine, sophoridine and oxymatrine were 93.9, 95.3 and 93.5% for the Sophora flavescens Ait. samples, respectively. The method has been successfully applied to the simultaneous determination of matrine, sophoridine and oxymatrine in Sophora Flavescens Ait. samples collected in different habitats.  相似文献   

2.
Wu X  Yamashita F  Hashida M  Chen X  Hu Z 《Talanta》2003,59(5):965-971
A simple high-performance liquid chromatography (HPLC) method is described for the determination of matrine in rat plasma. The plasma was deproteinized with acetonitrile that contained an internal standard (phenacetin) and was separated from the aqueous layer by adding sodium chloride. Matrine was extracted into the acetonitrile layer with high yield, and determined by reversed-phase HPLC (column: YMC-pack ODS-A, 5 μm, 150×4.6 mm, I.D.; eluent: acetonitrile-0.02 mol ammonium acetate buffer-triethylamine (35:65:0.035, v/v/v) and ultraviolet detection (220 nm). The limit of quantitation for matrine was 200 ng ml−1 in plasma, and the recovery was greater than 89%. The assay was linear from 0.5 to 50.0 μg ml−1. Variation over the range of the standard curve was less than 6%. The method was used to determine the concentration-time profiles of matrine in the plasma following oral administration of matrine aqueous solution or bolus injection from which the fractions of matrine reaching the systemic circulation were estimated by a deconvolution method for the first time.  相似文献   

3.
Wang S  Qu H  Cheng Y 《Electrophoresis》2007,28(9):1399-1406
A rapid, reproducible and high-sensitivity NACE-ESI-MS method was developed for the analysis of sophoridine, matrine, sophocarpine and oxymatrine in the roots of Sophora flavescens Ait. and S. tonkinensis Gagnep. Field-amplified sample stacking with electromigration-injection (FASS-EMI) was first used in NACE for the on-line concentration of the alkaloids. The conditions of NACE separation, FASS-EMI stacking and MS detection were systematically optimized. The optimum NACE buffer was an electrolyte containing 50 mM ammonium acetate, 0.5% acetic acid and 30% ACN in methanol. The sensitivity was improved by about 100-fold by the FASS-EMI technique, which was further improved by more than 1000-fold with MS detection. The RSDs (n = 6) of the relative migration time and relative peak area of each peak were less than 0.3 and 2.4% for intra-day and less than 5.1 and 6.0% for inter-day, respectively. The LODs (S/N = 3) of analytes were determined to be 0.0210-0.0446 ng/mL. A bioanalytical method based on this NACE-ESI-MS method may be developed for the analysis of the alkaloids in biological sample matrices (plasma, urine, etc.) after effective ion removal.  相似文献   

4.
An HPLC method was established and validated for the determination of compound FLZ, a synthetic novel anti-Parkinson's disease candidate drug, in rat plasma. FLZ and the internal standard bicyclol were extracted from plasma by solid-phase extraction method and analyzed on a Restek C18 column (4.6 x 250 mm, 5 microm) with a mobile phase consisting of methanol and water (60:40, v/v) at a flow rate of 1.0 mL/min. The detection wavelength was set at 320 nm. The calibration curve was linear within the concentration range from 25 to 500 ng/mL (r2 > 0.999), the limit of quantitation was 25 ng/mL and the average recovery was 92.0% with the RSD less than 5.9%. The relative standard deviation for intra- and inter-day precision was less than 3.8 and 6.9%, respectively. The established HPLC method was validated to be a simple, rapid and reliable procedure and applied to study the preclinical pharmacokinetics of FLZ in rat plasma, and it was the first time that the pharmacokinetics of FLZ had been investigated.  相似文献   

5.
A simple HPLC method was developed for determination of quercitrin and isoquercitrin in rat plasma. Reversed-phase HPLC was employed for the quantitative analysis using kaempferol-3-O-beta-D-glucopyranoside-7-O-alpha-L-rhamnoside as an internal standard. Following extraction from the plasma samples with ethyl acetate-isopropanol (95:5, v/v), these two compounds were successfully separated on a Luna C(18) column (250 x 4.6 mm, 5 microm) with isocratic elution of acetonitrile-0.5% aqueous acetic acid (17:83, v/v) as the mobile phase. The flow-rate was set at 1 mL/min and the eluent was detected at 350 nm for both quercitrin and isoquercitrin. The method was linear over the studied ranges of 50-6000 and 50-5000 ng/mL for quercitrin and isoquercitrin, respectively. The intra- and inter-day precisions of the analysis were better than 13.1 and 13.2%, respectively. The lower limits of quantitation for quercitrin and isoquercitrin in plasma were both of 50 ng/mL. The mean extraction recoveries were 73 and 61% for quercitrin and isoquercitrin, respectively. The validated method was successfully applied to pharmacokinetic studies of the two analytes in rat plasma after the oral administration of Hypericum japonicum thunb. ethanol extract.  相似文献   

6.
An improved simple, rapid and accurate HPLC method for quantification of doxorubicin derived from micelle-encapsulated or liposome-encapsulated doxorubicin formulation in rat plasma was described. The mobile phase consisting of a mixture of methanol-water [containing 0.1% formic acid anhydrous and 0.1% ammonia solution (25%), pH 3.0], 60:40, was delivered at a flow rate of 1.0 mL/min. Sample preparation for micelle- or liposome-encapsulated doxorubicin in rat plasma were achieved directly by protein precipitation with acetonitrile. Doxorubicin and daunorubicin (internal standard, IS) were separated on a C(18) reversed-phase HPLC column and quantified by a fluoresence detection with an excitation wavelength of 475 nm and an emission wavelength of 580 nm. The linearity was obtained over the range of 5.0-1000.0 ng/mL and 1.0-200.0 microg/mL for doxorubicin and the lower limit of quantitation was 5.0 ng/mL. For each level of quality control samples, inter- and intra-assay precision was less than 9.6 and 5.1% (relative standard deviation), respectively, and percentage error was within +/-2.6%. The extraction recoveries of doxorubicin in the range of 10 ng/mL to 100 microg/mL in rat plasma were between 94.1 and 105.6%. This method was successfully applied to the pharmacokinetic study of doxorubicin formulations after i.v. administration to rats.  相似文献   

7.
A high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of fluvoxamine and its major metabolite fluvoxamino acid in plasma. Fluvoxamine and fluvoxamino acid in plasma were extracted using a C18 bonded-solid phase cartridge, followed by C4 reversed-phase HPLC separation.Fluvoxamine, fluvoxamino acid and moperone as an internal standard were detected by ultraviolet absorbance at 254 nm. It was possible to determine both fluvoxamine and fluvoxamino acid in the concentration range of 25.0-200.0 ng/mL, respectively. The detection limits of both fluvoxamine and fluvoxamino acid were 10.0 ng/mL, respectively. The mean recoveries of fluvoxamine and fluvoxamino acid added to plasma were more than 94.0% and 96.5%, with a coefficient of variation of less than 7.6% and 8.2%, respectively. This method has been used for the simultaneous determination of steady-state plasma concentration (Css) of fluvoxamine and fluvoxamino acid in depressive patients treated with 200 mg of oral fluvoxamine dosed as 100 mg twice-daily. The Css values of fluvoxamine and fluvoxamino acid in twelve Japanese patients were showed individual variations, which were in the range of 48.3-532.9 ng/ml and 35.6-307.1 ng/ml, respectively.  相似文献   

8.
A simple, reliable HPLC method using fluorescence detection (excitation 307 and emission 483 nm) was developed and validated for simultaneous quantitation of zopiclone and its metabolite desmethylzopiclone in human plasma. Following a single-step liquid-liquid extraction, the analytes and internal standard (zaleplon) were separated using an isocratic mobile phase on a reversed-phase C18 column. The lower limit of quantitation was 3 ng/mL for zopiclone and 6 ng/mL for desmethylzopiclone with a relative standard deviation of less than 5%. A linear dynamic range of 3-300 ng/mL for zopiclone and of 6-500 ng/mL for desmethylzopiclone was established. This HPLC method was validated with between-batch precision of 1.7-4.2% and 3.2-7.5% for zopiclone and desmethylzopiclone respectively. The between-batch accuracy was 99.4-111.5% and 101.6-104.8% for zopiclone and desmethylzopiclone, respectively. Frequently coadministered drugs did not interfere with the described methodology. Stability of zopiclone and desmethylzopiclone in plasma was excellent, with no evidence of degradation during sample processing (autosampler) and 30 days' storage in a freezer. This validated method is simple and repeatable enough to be used in pharmacokinetic studies.  相似文献   

9.
A simple, reliable HPLC method with UV detection (295 nm) in rat plasma was developed and validated for quantification of tenatoprazole, a novel proton pump inhibitor, which is in clinical trials. Following a single-step liquid-liquid extraction, the analyte and internal standard were separated using an isocratic mobile phase on a reverse phase C(18) column. The lower limit of quantitation was 20 ng/mL, with a relative standard deviation of less than 10%. A linear dynamic range of 20-6000 ng/mL was established. This HPLC method was validated with between-batch and within-batch precision of 2.9-6.3 and 1.4-5.8%, respectively. The between-batch and within-batch accuracy was 95.1-104.1 and 92.4-101.0%, respectively. This validated method is simple and repeatable enough to be used in pharmacokinetic studies.  相似文献   

10.
A highly sensitive high-performance liquid chromatographic quantification method with fluorescence detection was developed and validated for the determination of doxazosin in human plasma. The developed method employed one-step extraction of doxazosin from plasma matrix with ethyl acetate using propranolol as an internal standard. Chromatographic separation was obtained within 8.0 min using a reverse-phase Capcell-Pak C(18) column (150 x 4.6 mm i.d., 5 microm) and the mobile phase consisted of methanol-water containing 10 mM perchloric acid and 1.8 mM sodium heptane sulfonic acid (50:50, v/v) and was set at a flow rate of 1.5 mL/min. The calibration curve constructed was linear in the range of 0.3-50.0 ng/mL. The proposed method achieved a lower limit of quantification of 0.3 ng/mL, better than the reported HPLC methods. Average recoveries of doxazosin and the internal standard from human plasma matrix were 87.0 and 85.9%, respectively. The present method was validated by evaluating the precision and accuracy for inter- and intraday variation in the concentration range 0.3-50 ng/mL. The precision values expressed as relative standard deviations in the inter- and intraday validation were 1.17-6.29 and 0.84-5.94%, respectively. This method was successfully applied to the bioequivalence study of two doxazosin controlled release tablets in healthy, male human subjects.  相似文献   

11.
A high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of niflumic acid and its prodrug, talniflumate, in human plasma. Niflumic acid and talniflumate were eluted isocratically with methanol-water (73:27, v/v, adjusted to pH 3.5 by acetic acid) at a fl ow rate of 1 mL/min. Indomethacin was used as an internal standard. Signals were monitored by an UV detector at 288 nm. Retention times of indomethacin, niflumic acid and talniflumate were 5.9, 7.2 and 13.5 min, respectively. Calibration plots were linear over the range 50-5000 ng/mL for niflumic acid and 100-5000 ng/mL for talniflumate. The limits of quantitation were 50 ng/mL for niflumic acid and 100 ng/mL for talniflumate. The intra- and inter-day relative standard deviations (RSD) of niflumic acid and talniflumate were less than 10% and the accuracies were higher than 90%. This method is rapid, sensitive and reproducible for the determination of niflumic acid and talniflumate in human plasma.  相似文献   

12.
A simple, sensitive and selective high-performance liquid chromatographic (HPLC) method with UV detection (306 nm) was developed and validated for determination of tenatoprazole, a novel proton-pump inhibitor, in dog plasma. Tenatoprazole and internal standard (pantoprazole) were extracted into diethyl ether and separated using an isocratic mobile phase of 10 mm phosphate buffer (pH4.7)-acetonitrile (70:30, v/v) on a Diamonsil C(18) column (150 x 4.6 mm, 5 microm). The retention times for tenatoprazole and internal standard were 7.1 and 12.3 min, respectively. No endogenous interferences were observed. This HPLC method was fully validated. The lower limit of quantitation was 20 ng/mL, with a relative standard deviation of less than 20%. A linear range of 0.02-5.0 microg/mL was established. The interday and intraday precisions were within RSD 13.4-10.1 and 4.6-1.4%, respectively. This method developed can be easily applied to the pharmacokinetic study of tenatoprazole in dog plasma after oral administration of an enteric-coated capsule. The plasma concentration of tenatoprazole from six dogs showed a mean C(max) of 2.63 microg/mL at T(max) of 1.89 h. The bioavailability of tenatoprazole was improved by administration of enteric-coated capsule.  相似文献   

13.
A simple and sensitive method for the determination of nitrendipine in rat plasma was developed using high-performance liquid chromatography (HPLC). The procedure involves extraction of nitrendipine in dichloromethane/sodium hydroxide, followed by reversed phase HPLC using a Waters, Spherisorb ODS2 (250 x 4.6 mm, 5 microm) column and UV detection at 238 nm. The retention times of nitrendipine and internal standard (felodipine) were 5.0 min and 7.5 min, respectively. The calibration curves were linear over the range of 5 ng/mL (lower limit of quantification, LOQ) to 200 ng/mL for nitrendipine. The intra- and inter-day coefficients of variation for all criteria of validation were less than 15% over the linearity range. The sensitivity and precision of the method were within the accepted limits (< 15%) throughout the validation period. The present method was also successfully applied for the study of plasma pharmacokinetics of nitrendipine loaded solid lipid nanoparticles (SLN) in rats.  相似文献   

14.
A simple, reliable HPLC method with fluorescence detection (excitation 320 and emission 388 nm) was developed and validated for quantitation of zolpidem in human plasma. Following a single-step liquid-liquid extraction, the analyte and internal standard (quinine) were separated using an isocratic mobile phase on a reversed-phase C(18) column. The lower limit of quantitation was 1.8 ng/mL, with a relative standard deviation of less than 5%. A linear dynamic range of 1.8-288 ng/mL was established. This HPLC method was validated with between-batch and within-batch precision of 1.7-4.8 and 1.2-2.3%, respectively. The between-batch and within-batch accuracy was 95.3-100.4 and 95.5-102.7%, respectively. Frequently coadministered drugs did not interfere with the described methodology. Stability of zolpidem in plasma was excellent, with no evidence of degradation during sample processing (autosampler) and 30 days storage in a freezer. This validated method is simple and repeatable enough to be used in pharmacokinetic studies.  相似文献   

15.
A simple and sensitive reversed-phase high performance liquid chromatographic method (HPLC) has been developed and validated for the routine analysis of diltiazem in human plasma and the study of the pharmacokinetics of the drug in the human body. Diltiazem and diazepa (internal standard) were extracted with a mixed organic solution of hexane, chloroform and isopropanol (60:40:5, v/v/v), and then HPLC separation of the drugs was performed on an Spherisorb C(18) column and detected by ultraviolet absorbance at 239 nm. The use of methanol-water solution (containing 2.8 mm triethylamine, 80:20, v/v) as the mobile phase at a fl ow-rate of 1.2 mL/min enables the baseline separation of the drugs free from interferences with isocratic elution. The method was linear in the clinical range 0-300 ng/mL and the lower limit of detection of diltiazem in plasma was 3 ng/mL. The range of percentage of relative standard deviation (%RSD) was from 3.5 to 6.8% for within-day analyses and from 6.2 to 8.4% for between-day analyses, respectively. The extraction recoveries of diltiazem from spiked human plasma (n = 5) at three concentrations were 91.4-104.0%. The method has been used to determine diltiazem in human plasma samples from eight volunteers who had taken diltiazem hydrochloride slow release tables and the data obtained was fitted with a program on computer to study the pharmacokinetics. The results showed that the peak level in plasma approximately averaged 118.5 +/- 14.3 ng/mL at 3.1 +/- 0.4 h, and the areas under the drug concentration curves (AUC) was 793.1 +/- 83.1 ng.h/mL.  相似文献   

16.
A sensitive and rapid method based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) combined with rapid solid-phase extraction (SPE) has been developed and validated for the quantitative determination of enalapril and its active metabolite enalaprilat in human plasma. After addition of internal standard to human plasma, samples were extracted by 96-well SPE cartridge. The extracts were analyzed by HPLC with the detection of the analyte in the multiple reaction monitoring (MRM) mode. This method for the simultaneous determination of enalapril and enalaprilat was accurate and reproducible, with respective limits of quantitation of 0.2 and 1.0 ng/mL in plasma. The standard calibration curves for both enalapril and enalaprilat were linear (r(2) = 0.9978 and 0.9998) over the concentration ranges 0.2-200 and 1.0-100 ng/mL in human plasma, respectively. The intra- and inter-day precision over the concentration range for enalapril and enalaprilat were lower than 13.3 and 15.4% (relative standard deviation, %RSD), and accuracy was between 89.2-105.0 and 91.9-104.7%, respectively.  相似文献   

17.
A simple, specific and sensitive HPLC method has been developed for the determination of metoprolol in human plasma and urine. Separation of metoprolol and atenolol (internal standard) was achieved on an Ace C18 column (5 μm, 250 mm×4.6 mm id) using fluorescence detection with λex=276 nm and λem=296 nm. The mobile phase consists of methanol–water (50:50, v/v) containing 0.1% TFA. The analysis was performed in less than 10 min with a flow rate of 1 mL/min. The assay was linear over the concentration range of 3 – 200 and 5 – 300 ng/mL for plasma and urine, respectively. The LOD were 1.0 and 1.5 ng/mL for plasma and urine, respectively. The LOQ were 3.0 and 5.0 ng/mL for plasma and urine, respectively. The extraction recoveries were found to be 95.6 ± 1.53 and 96.4 ± 1.75% for plasma and urine, respectively. Also, the method was successfully applied to three patients with hypertension who had been given an oral tablet of 100 mg metoprolol.  相似文献   

18.
A simple and sensitive HPLC method has been developed for the determination of danofloxacin (DAN) in plasma. Sample preparations were carried out by adding phosphate buffer (pH 7.4, 0.1 M), followed by extraction with trichloromethane. DAN and the internal standard, sarafloxacin (SAR), were separated on a reversed-phase column, and eluted with aqueous solution-acetonitrile (80:20 v/v). The fluorescence of the column effluent was monitored at lambda(ex) = 338 and lambda(em) = 425 nm. The retention times were 2.80 and 4. 40 min for DAN and SAR, respectively. The method was shown to be linear from 1 to 1500 ng/mL (r(2) = 0.999). The detection and quantitation limit were 1 and 5 ng/mL, respectively. Mean recovery was determined as 80% by the analysis of plasma standards containing 150, 750 and 1500 ng/mL. Inter- and intra-assay precisions were 4.0% and 2.4%, respectively.  相似文献   

19.
To support the pharmacokinetic and bioavailability study of a once-daily fexofenadine/pseudoephedrine combination, a high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry (HPLC/ESI-MS/MS) method for the simultaneous quantification of fexofenadine and pseudoephedrine was developed and validated with 500 microL human plasma using mosapride as an internal standard (IS). Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 502/466 for fexofenadine, m/z 166/148 for pseuoephedrine and m/z 422/198 for the IS. The method exhibited linear dynamic ranges of 1-500 ng/mL and 2-1000 ng/mL for fexofenadine and pseudoephedrine, respectively, in human plasma. The lower limits of quantification were 1 and 2 ng/mL with a relative standard deviation of less than 10% for fexofenadine and pseudoephedrine, respectively. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time was 2 min and more than 400 human plasma samples could be analyzed in one day by running the system overnight. The method is precise and sensitive enough for its intended purpose.  相似文献   

20.
A sensitive, rapid and specific method for the simultaneous quantification of oxysophocarpine (OSC) and its active metabolite sophocarpine (SC) in rat plasma was developed and validated, using a liquid-liquid extraction procedure followed by liquid chromatography/electrospray ionization mass spectrometric (LC/ESI-MS) analysis. The separation was performed on a Zorbax Extend-C(18) column (2.1 mm i.d. x 50 mm, 5 microm) with a C(18) guard column using methanol-water containing 5 mm ammonium acetate (15:85, v/v) as mobile phase. Analysis was performed in selected ion monitoring (SIM) mode with an electrospray ionization (ESI) interface. [M + H](+) at m/z 263 for OSC, [M + H](+) at m/z 247 for SC and [M + H](+) at m/z 249 for matrine (internal standard) were selected as detecting ions, respectively. The method was linear in the concentration ranges 10-1000 ng/mL for OSC and 5-500 ng/mL for SC. The intra- and inter-day precisions (coefficient of variation) were within 7% for both analytes. Their accuracy (relative error) ranged from -6.4 to 1.5%. The limits of detection for OSC and SC were 3 and 1.5 ng/mL, respectively. The limits of quantitation for OSC and SC were 10 and 5 ng/mL, respectively. Recoveries of both analytes were greater than 85% at the low, medium and high concentrations. Both analytes were stable during all sample storage, preparation and analytic procedures. The method was successfully applied to a pharmacokinetic study after an oral administration of OSC to rats with a dose of 15 mg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号