首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Differential scanning calorimetry (DSC) is the most widely used thermal analytical technique in food research and it has a great utility in quality assurance of food. Proteins are the most studied food components by thermal analysis including studies on conformation changes of food proteins as affected by various environmental factors, thermal denaturation of tissue proteins, food enzymes and enzyme preparations for the food industry, as well as effects of various additives on their thermal properties. Freezing-induced denaturation of food proteins and the effect of cryoprotectants are also monitored by DSC. Polymer characterization based on DSC of polysaccharides, gelatinization behaviour of starches and interaction of starch with other food components can be determined, and phase transitions during baking processes can be studied by DSC. Studies on crystallization and melting behaviour of fats observed by DSC indicate changes in lipid composition or help characterizing products. Thermal oxidative decomposition of edible oils examined by DSC can be used for predicting oil stability. Using DSC in the freezing range has a great potential for measuring and modelling frozen food thermal properties, and to estimate the state of water in foods and food ingredients. Research in food microbiology utilizes DSC in better understanding thermoadaptive mechanisms or heat killing of food-borne microorganisms. Isothermic microcalorimetric techniques provide informative data regarding microbial growth and microbial metabolism.  相似文献   

2.
The crystallization kinetics of polyamide-12 has been investigated using a combination of differential scanning calorimetry (DSC) and hot-stage optical microscopy. The DSC data for isothermal crystallization were consistent with a simple two-parameter Avrami model for isothermal crystallization and optical measurements of the spherulite growth rates and nucleation density. On the basis of semiempirical expressions for these quantities, it is shown that with small adjustments the model can also account for DSC data for nonisothermal crystallization, provided that corrections are made for the dynamic heat balance between the sample and the DSC oven. Received: 9 March 2000 Accepted: 28 September 2000  相似文献   

3.
The value and limitations of differential scanning calorimetry in the assessment of high-purity substances has been examined. In favorable cases, good agreement has been secured for polycyclic hydrocarbons between DSC purity values and GC assay values. For some halogenated benzoic acids, used as microanalytical reference standards, good agreement has been obtained between DSC purity values and acid—base titration results. DSC studies on cholesterol and urea, which have limited thermal stability, are presented. With the available instrument and technique, the practical upper limit of absolute DSC purity values may be 99.95 mole%, although higher numerical values can be obtained. Because the DSC technique is “blind” to equilibrium solid solution formation, DSC values should not be used as a sole criterion of purity; this recommendation is of special importance for compounds purified by fractional solidification processes.  相似文献   

4.
Differential scanning calorimetry (DSC) is increasingly used as evidence to support a favourable safety profile of novel chemistry, or to highlight the need for caution. DSC enables preliminary assessment of the thermal hazards of a potentially energetic compound. However, unlike other standard characterisation methods, which have well defined formats for reporting data, the current reporting of DSC results for thermal hazard assessment has shown concerning trends. Around half of all results in 2019 did not include experimental details required to replicate the procedure. Furthermore, analysis for thermal hazard assessment is often only conducted in unsealed crucibles, which could lead to misleading results and dangerously incorrect conclusions. We highlight the specific issues with DSC analysis of hazardous compounds currently in the organic chemistry literature and provide simple “best practice” guidelines which will give chemists confidence in reported DSC results and the conclusions drawn from them.  相似文献   

5.
Combination of two techniques, photoacoustic (PA) and differential scanning calorimetry (DSC), is a combination of quasi stationary thermodynamic DSC method and nonstationary dynamic PA method. Especially favorable and easy to realize is the combination with power compensated type of DSC. It has several advantages over the use of two techniques separately and allow to perform measurements simultaneously. The most obvious is simultaneous determination of thermodynamic properties such as specific heat, heat of transition and dynamic properties such as effusivity, thermal conductivity at the different phase transitions and complex specific heat at the glass transition. Unlike other temperature modulated techniques PA–DSC is especially suitable for studying polymer materials since their low thermal conductivity is an additional advantage. Conditions for simultaneous measurements are examined. It is proved that the combination of two techniques and necessary changes in construction do not essentially change adequate work of the instrument. A little disbalance of DSC operation due to the construction change can be corrected simply by recalibration. The procedures for testing and calibration for the proper operation of the combined PA–DSC are given together with some details of experimental methodology. Several measurements could serve as examples of widespread applicability of PA–DSC to study different types of phase transitions as well as time dependent processes such as glass transition.  相似文献   

6.
Gas reactions, catalyzed by solid catalysts, can be measured by DSC. In the experimental set-up an open sample pan with catalyst (powder or pellet) is placed on the sample side of the DSC sensor. The reactive gas mixture flows through the cell and reacts on the catalyst surface. The heat effect, caused by this reaction, results into a DSC signal.The calibration procedure is described for quantitative evaluation of the DSC measurements. For illustration four different reaction systems are discussed.  相似文献   

7.
染料敏化太阳电池电解质   总被引:1,自引:0,他引:1  
郭磊  潘旭  戴松元 《化学进展》2008,20(10):1595-1605
染料敏化太阳电池是新一代的太阳电池,有着巨大的应用前景。其中电解质体系是电池组成的主要部分,对电池的性能有着重要的影响。本文介绍了染料敏化太阳电池的基本原理,详细评述了近几年国内外学者对染料敏化太阳电池用电解质体系的研究进展情况,根据电解质的存在状态将其分为液态、准固态和固态三大类并逐一进行介绍,最后对该领域的前景进行了展望。  相似文献   

8.
陈咏萱  周东山  胡文兵 《高分子学报》2021,(4):423-444,I0004
示差扫描量热法(DSC)是表征材料热性能和热反应的一种高效研究工具,具有操作简便、应用广泛、测量值物理意义明确等优点.近年来DSC技术的发展大大拓展了高分子材料表征的测试范围,促进了对高分子物理转变的热力学和动力学的深入研究.温度调制示差扫描量热法(TMDSC)是DSC在20世纪90年代的标志性进展,它在传统DSC的线性升温速率的基础之上引入了调制速率,从而可将总热流信号分解为可逆信号和不可逆信号两部分,并能测量准等温过程的可逆热容.闪速示差扫描量热法(FSC)是DSC技术近年来的创新性发展,它采用体积微小的氮化硅薄膜芯片传感器替代传统DSC的坩埚作为试样容器和控温系统,实现了超快速的升降温扫描速率以及微米尺度上的样品测试,使得对于高分子在扫描过程中的结构重组机制的分析以及对实际的生产加工条件的直接模拟成为可能.本文从热分析基础出发,依次对传统DSC、TMDSC和FSC进行了介绍,内容覆盖其发展历史、方法原理、操作技巧及其在高分子表征中的应用举例,最后对DSC未来的发展和应用进行了展望.本文希望通过综述DSC原理、实验技巧和应用进展,帮助读者加深对DSC这一常用表征技术的理解,进一步拓展DSC表征高分子材料的应用.  相似文献   

9.
DSC purity analysis is based on thermodynamic phase diagrams for substances (purity ≥98%) which undergo a melting point. Impurities which have eutectic behaviour with the analyte are determined together. DSC purity analysis obtained from a single melting event of a 1–2 mg sample is, therefore, extremely attractive for the global assessment of eutectic impurities. The main advantages in early development lie in the very small amount of material necessary and the very fast analysis time. However, the DSC purity analysis cannot replace chromatographic methods which deliver specific individual levels of impurities. Furthermore, a complete validation of a DSC purity method is difficult and time consuming. Despite these limitations, DSC is the best support for the development of chromatographic methods, for purity profile and stability assessment during pharmaceutical development. Parameters of purity determination and validation aspects are discussed. Examples of use in pharmaceutical development are given.  相似文献   

10.
Differential scanning calorimetry (DSC), the most important technique for studying the thermodynamics of structural transitions of biological macromolecules, is seldom used in quantitative thermodynamic studies of surfactant micellization/demicellization. The reason for this could be ascribed to an insufficient understanding of the temperature dependence of the heat capacity of surfactant solutions (DSC data) in terms of thermodynamics, which leads to problems with the design of experiments and interpretation of the output signals. We address these issues by careful design of DSC experiments performed with solutions of ionic and nonionic surfactants at various surfactant concentrations, and individual and global mass‐action model analysis of the obtained DSC data. Our approach leads to reliable thermodynamic parameters of micellization for all types of surfactants, comparable with those obtained by using isothermal titration calorimetry (ITC). In summary, we demonstrate that DSC can be successfully used as an independent method to obtain temperature‐dependent thermodynamic parameters for micellization.  相似文献   

11.
The deformation introduced during the sample preparation had a high impact on the response of the alloy AA6082 to heating in the DSC cell. The DSC curve was strikingly different when DSC samples of this alloy were punched after the solution treatment. Dislocations introduced by punching have annihilated the quenched-in vacancies and have suppressed clustering initially. Dislocations have also provided heterogeneous nucleation sites for the GP-1 zones that readily grew to become stable nuclei for the β" phase owing to the enhanced atomic transport. β" as well as the β' precipitation kinetics were thus accelerated leading to a substantial change in the DSC peak arrangement. Deformation introduced during sample preparation by gentle grinding alone, on the other hand, did not suffice to alter the precipitation sequence, producing a DSC curve very similar to that obtained with samples punched before the solution treatment.  相似文献   

12.
不同实验条件对DSC峰形的影响以及相变温度的确定   总被引:2,自引:0,他引:2  
本文通过深入分析实际的DSC过程,阐述了DSC曲线上各个特征点以及这些点所对应的物理意义。在理论上分析各种不同的实验条件对DSC曲线形状的影响,指出目前在DSC分析中所用的确定试样熔点的方法以及用高纯金属DSC变曲线上熔融峰峰前沿的斜率修正试样相变温度所存在的问题,指出DSC相变曲线刚开始偏离基线的那点所相应试样盒的温度即为试样的熔点,本文还提出了通过提高试样,试样盒以及试样支座之间的热导率,来提  相似文献   

13.
采用差示扫描量热法(DSC),根据DSC曲线利用纯度分析软件测定草酸艾司西酞普兰的纯度。对实验条件进行了优化,升温速率为4.0 K/min,称样量为2~3.2 mg。测得草酸艾司西酞普兰的纯度为99.17%,相对标准偏差为0.05%(n=6)。该法测定结果与非水滴定法测定结果(99.24%)基本一致。差示扫描量热法可用于测定草酸艾司西酞普兰纯度,方法操作简便、结果准确。  相似文献   

14.
The basic physical and chemical principles behind the dye-sensitized nanocrystalline solar cell (DSC: also known as the Gr?tzel cell after its inventor) are outlined in order to clarify the differences and similarities between the DSC and conventional semiconductor solar cells. The roles of the components of the DSC (wide bandgap oxide, sensitizer dye, redox electrolyte or hole conductor, counter electrode) are examined in order to show how they influence the performance of the system. The routes that can lead to loss of DSC performance are analyzed within a quantitative framework that considers electron transport and interfacial electron transfer processes, and strategies to improve cell performance are discussed. Electron transport and trapping in the mesoporous oxide are discussed, and a novel method to probe the electrochemical potential (quasi Fermi level) of electrons in the DSC is described. The article concludes with an assessment of the prospects for future development of the DSC concept.  相似文献   

15.
染料敏化太阳电池(DSC)是一种新型光伏电池。本文从高效率化和长期耐久性两方面分析了目前制约DSC产业化的因素,并综述了解决这些问题的最新研究成果。重点论述了世界DSC产业化研究的最新动态,并对这一新型太阳电池产业化的未来发展方向及发展前景进行了展望。  相似文献   

16.
According to Watson′s DSC principle, a new design of electric circuit of DSC was proposed, Referring to the instrument constraction of DSC of Perkin-Elmer corporation, a new instrument construction of DSC was designed.This new electric circuit and this new instrument construction can overcome the shortcomings in de- sign of DSC of Perkin-Elmer corporation, Figure 1 is a schematic diagram of the new electric circuit. The temperatures and enthalpies of phase transitions of stan- dard materials were measured by using the new DSC. The experimental results are shown in table 1.  相似文献   

17.
This is a study for criteria to judge the melting point of semi-crystalline polymers from the DSC endotherm for polymer melting. Beyond standard indium DSC melting results an evaluation has been made on a series of polyethylenes for which crystal sizes were measured and predicted from Raman LAM analysis. The results confirm the conclusion of Prof. Wunderlich that the DSC content of melting is the proper basis of reporting melting points.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthday  相似文献   

18.
Thermal analysis techniques, DSC and TG can advantageously be used in quality control of drug products.The methods are commonly used in preformulation for the study of polymorphism and for the study of the interactions drug substance-excipients, since these physical interactions can be the basis of the dosage form performance.For routine control of the drug products, DSC and TG methods which are quick, which require only few mg of the samples and which are automated, are very attractive for routine analysis of drug products. A single scan can give several qualitative and quantitative informations.DSC offer analytical possibilities only if the drug substance and the excipients do not have physical interactions or limited interactions (e.g. eutectic behaviour). About twenty marketed products have been analyzed by DSC and TG. In most of them identification of drug substance is easy. Several excipients could be identified in a tablet. Quantitations are demonstrated for some drug substances and excipients. DSC purity calculations have been applied to acetyl salicylic acid, paracetamol, cimetidine, pindolol, ibuprofen.  相似文献   

19.
A new instrument for DSC in combination with thermomicroscopy in transmitted light is described, where a DSC device is in corporated within a commercially available hot stage.  相似文献   

20.
Differential scanning calorimetry (DSC) is one of the most frequently used techniques for analyzing small concentrations of amorphous phases in a crystalline matrix. In recent years novel enhanced DSC approaches have been intensively looked for to improve parameters such as sensitivity, accuracy, and detection limit of the technique. Low levels of amorphous phases can be quantitatively determined in DSC by measuring the heat capacity change associated with the glass transition. In this short review the potentials provided by the HyperDSC and StepScan DSC techniques are discussed. Examples illustrate the advantages and disadvantages of the techniques and compare their abilities to detect small glass transitions and determine low contents of amorphous phases in samples which are mostly crystalline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号