首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— DNA damage induced by 8-methoxypsoralen (8-MOP) plus near UV light (UVA) was analyzed in diploid yeast using the alkaline step elution technique. The presence of 8-MOP and UVA induced DNA interstrand cross-links was revealed by the increase of DNA retained on elution filters as compared to untreated controls. The fraction of DNA retained on filters increased linearly with UVA dose. The amount of cross-links was estimated from the fraction of DNA retained on filters using a dose of -radiation leading to a number of DNA strand breaks at least equivalent to the number of 8-MOP induced photoadducts.
When 8-MOP treated cells were exposed to monochromatic light, 365 nm light induced monoadducts and cross-links whereas 405 nm light induced only monoadducts. When submitting 8-MOP plus 405 nm light treated cells to 365 nm irradiation, after removal of unbound 8-MOP by washing, a portion of 8-MOP plus 405 nm light induced monoadducts was converted into cross-links. The amount of monoadducts transformed into cross-links was dependent on the dose of 365 nm irradiation up to a maximum likely to correspond to the number of suitably positioned furan-side monoadducts that could be converted into biadducts. When 8-MOP plus 365 nm light treated cells were reirradiated with 365 nm light, following the same protocol, the maximum level of cross-linking obtainable in yeast was lower than that obtained with 8-MOP in a 405 nm plus 365 nm reirradiation protocol.
In the presence of 8-MOP single exposures to 405 nm light were found to be only slightly genotoxic. However, when followed by second exposures to 365 nm light, a dose-dependent increase in genetic effects, i.e. mutation and gene conversion, was observed in parallel to the induction of DNA crosslinks. These results stress again the prominent role of DNA cross-links in the genotoxicity of 8-MOP.  相似文献   

2.
Abstract— Seven axenic wild-type and repair-deficient mutant strains of the cellular slime mold Dictyostelium discoideum have been treated with the furocoumarin 8-methoxypsoralen (8-MOP) up to 50 μg/mζ and then exposed to near ultraviolet light (UVA 320-400 nm) up to 21 kJ/m2. Fluence-response survival curves exhibit shoulders at lower fluences and an exponential lethal response at higher fluences. Neither the psoralen alone nor the irradiation alone produced any measurable lethal effect. Wild-type strains, which show resistance to 254 nm UV and gamma radiation, also show resistance to psoralen plus UVA. The moderate sensitivity of a rad D repair-deficient mutant strain and the extreme sensitivity of a rad B mutant strain to 8-MOP plus UVA parallel their responses to UV and gamma radiation. However a rad C mutant which is sensitive to UV, exhibits wild-type response to photoactivated psoralen.  相似文献   

3.
Abstract— The effect of 8-methoxypsoralen (8-MOP) plus ultraviolet radiation (UV) of different wavelengths in the region 238–365 nm on the induction of SV40 from SV40-transformed Syrian hamster kidney cells was investigated. Results indicate that 8-MOP + UV treatment activates as much as 1000-fold more virus than UV alone at wavelengths in the region 302–365 nm. At wavelengths below 302 nm, 8-MOP addition to cells prior to irradiation shows little, if any, effect. A wavelength dependence for this viral induction is presented.  相似文献   

4.
Abstract— For the same furocoumarin 8-MOP and the same total number of photoadditions, the genetic activity of DNA monoadducts and a mixture of mono- and biadducts photoinduced by the bifunctional furocoumarin 8-methoxypsoralen (8-MOP) is compared in the yeast Saccharomyces cerevisiae. In the presence of 8-MOP, 405 nm irradiation induces only monoadducts, whereas 365 nm irradiation induces mono- and biadducts (interstrand cross-links) in DNA. This is shown by heat denaturation-renaturation experiments on calf thymus DNA treated in vitro and by alkaline step elution analysis of DNA from treated yeast cells. For the same photobinding of tritiated 8-MOP to DNA in diploid yeast, about 20 times higher doses are needed with 405 nm than with 365 nm irradiation. Re-irradiation experiments reveal that part of the monoadducts induced by 8-MOP and 405 nm irradiation can be effectively converted into DNA interstrand cross-links by exposures to 365 nm radiation after washing-out of unbound 8-MOP molecules. 8-MOP and 405 nm irradiation induce per lethal hit cytoplasmic "petite" mutations in yeast as efficiently as the monofunctional furocoumarin 3-carbethoxypsoralen (3-CPs) and 365 nm irradiation, both treatments being much more efficient than 8-MOP and 365 nm irradiation. At equal survival, treatments with 8-MOP and 405 nm radiation are clearly less efficient than treatments with 8-MOP and 365 nm radiation for the induction of forward ( CAN *) and reverse ( HIS +) mutations in haploïd yeast and for the induction of mutations ( ILV +) and genetically aberrant colonies including mitotic crossing-over in diploid yeast. The two treatments are equally efficient for the induction of mitotic gene conversion. At equal photobinding of 8-MOP, the monoadducts induced by 405 nm irradiation are found less effective than the mixture of mono-and biadducts induced by 365 nm irradiation for the induction of cell killing, mutations and mitotic recombination.  相似文献   

5.
Abstract—At an cquimolar concentration of 50 μM the bifunctional furocoumarin, 8-methoxypsoralen (8-MOP), is about 36 times more efficient in inhibiting the colony forming ability of CV-I monkey kidney cells than the monofunctional furocoumarin angelicin. In contrast 8-MOP is only 7.5 times more efficient than angelicin for the inhibition of herpes simplex virus (HSV) production in CV-1 cells. This latter factor seems to reflect differences in photoreactivity of the two compounds with host cell DNA.
A substantial recovery of HSV production was seen when cells were infected at different time intervals after treatment with angelicin-plus-light, whereas recovery was very limited after 8-MOP plus light treatment. The recovery process was slow as compared to that observed after UV (254 nm)-irradiation.
The repair capacities of treated normal and xeroderma pigmentosum (group A) skin fibroblasts were estimated by measuring HSV production and unscheduled DNA synthesis. XP-A cells repaired angelicin induced damage less efficiently than did normal cells. Neither cell type showed any repair activity after 8-MOP plus light treatment.  相似文献   

6.
We report the effects of 8-methoxypsoralen (8-MOP) plus ultraviolet-A (UV-A) irradiation on interleukin-1 (IL-1) production by murine epidermal keratinocytes, correlating its effect on IL-1 with cell viability, DNA synthesis, and 8-MOP-DNA photoadduct formation. Freshly isolated murine keratinocytes were treated with various doses of 8-MOP (5-100 ng/mL; incubation time, 30 min) plus 1 J/cm2 UV-A and cultured for 1-3 days. The IL-1/epidermal cell-derived thymocyte-activating factor (ETAF) activity in both supernatant and cell extract was reduced proportionately with increasing doses of 8-MOP/UV-A. Interleukin-1 inhibitors induced by 8-MOP plus UV-A were not detected in either supernatant or cell extract. A clear reduction of the IL-1 production was induced by the treatment as low as 15 ng/mL 8-MOP plus 1 J/cm2 UV-A, which led to the formation of 0.52 8-MOP photoadducts per million DNa bases and affected neither cell viability nor DNA synthesis of the treated cells. Cells treated with 100 ng/mL 8-MOP and 1 J/cm2 UV-A exhibited 57% suppression of IL-1 production in both 2- and 3-day culture samples. This treatment resulted in the formation of 3.8 photoadducts per million bases as well as significant abrogation of DNA synthesis although cell viability was unchanged. These observations provide some insights into the phototoxicity mechanisms of 8-MOP and the effect of PUVA therapy on the cytokine regulation in keratinocytes.  相似文献   

7.
–The techniques of viscoelastometry and S1 nuclease digestion were applied to the analysis of DNA damage in rat 9L cells treated with the combination of 8-MOP (8-methoxysporalen) and near-UV light. Treatment of cells with near-UV light alone resulted in a decrease in the viscoelastic retardation time under both denaturing and nondenaturing conditons. Exposure of cells to 8-MOP alone yielded a maximum in the plot of retardation time vs dose under nondenaturing conditions, similar to that found with ionizing radition. This observation suggests that treatment with 8-MOP alone leads to DNA strand breaks. Viscoelastic analysis of cell lysates under denaturing conditions demonstrated that treatment of cells with 8-MOP and UV radiation led to substantial increases in both the viscoelastic retardation time and recoil, consistent with formation of DNA interstrand cross-links. Viscoelastic analysis of cell lysates under nondenaturing conditions showed that exposure to long wavelength UV light in the presence of 8-MOP produced a decrease in retardation time. This decrease reflects the combined effect of strand breaks and interstrand cross-links. Results from the S1 nuclease assay confirmed these observations and permitted quantitation of DNA damage arising from single-strand breaks and DNA interstrand crosslinks. The importance of including the effect of strand breaks in the quantitation of cross-link formation is discussed.  相似文献   

8.
Abstract— On treatment with 8-methoxypsoralen plus near UV light, an excisionless ( uvrB- ) strain of Escherichia coli showed about 3– and 10 times higher sensitivities to killing and mutation, respectively, than its parental strain. On re-irradiation with near UV in the absence of unbound psoralen, the uvrB- strain pretreated with psoralen plus near UV showed a decrease in both survival and mutation. After treatment with psoralen plus near UV, re-irradiation of T7 DNA in the absence of unbound psoralen caused an increase in the cross-linked fraction with an equivalent decrease in the non-cross-linked fraction. From these and previous results, we conclude that monoadducts produced by treatment with psoralen plus near UV are converted to cross-links by further irradiation and that, in E. coli , monoadducts are responsible for the mutation induced by psoralen-plus-light whereas cross-links are the major cause of its lethal action.  相似文献   

9.
Abstract The interaction of near-UV light and a photosensitizer, 8-methoxypsoralen (8-MOP), was studied in the Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase system; cell survival (cloning efficiency) and mutation induction (resistance to 6-thioguanine) were quantified. Exposure of cells to either 8-MOP up to 20 μg/m l (93 μ M ) or near–UV light up to 40000 J/m2 had no effect on either survival or mutation frequency. Preincubation of cells with 8–MOP from 5 to 120 min prior to irradiation with various fluences did not affect cell survival or mutation frequency. Survival decreased and mutation frequency increased linearly when either the 8-MOP concentration or fluence was increased while the other factor was held as a constant. Mutation frequency appears to show reciprocity relative to the product of 8-MOP concentration times fluence of near–UV light [(μg/m l )·(J/m2)] throughout a range apparently limited by high cell lethality. The observed pooled data on mutation, f (x), as a function of (μg/m l )·(J/m2), x , fit a linear dose–response line, f (x) = (34.2 + 0.05 x ) × 10-6. Cell survival, however, does not appear to exhibit such reciprocity.  相似文献   

10.
Abstract— We have previously demonstrated that 8-methoxypsoralen (8-MOP) can be found in the lenses of rats injected (i.p.) with this drug, and that its presence can lead to a photosensitized enhancement of lenticular fluorescence. The cutaneous photosensitizing properties of psoralens are thought to be mediated via their excited triplet states, resulting in photoaddition cyclobutane products between pyri-midine bases and 8-MOP. We have now investigated the possibility that similar types of photoadducts could be generated between 8-MOP and the aromatic amino acid residues in lens proteins. Our experiments involved in vitro irradiation (at 360 nm) of aqueous solutions of 0.1 mM 8-MOP plus purified alpha, beta, or gamma crystallins from calf or normal human (under 20 years of age) lenses. UV absorption and fluorescence emission spectra were measured before and after radiation, and aliquots from all experiments were frozen and kept in the dark for subsequent phosphorescence and EPR spectroscopy. Similar experiments were performed with irradiated aqueous solutions of tryptophan or thymine plus 8-MOP. All controls consisted of solutions kept in the dark. NMR spectra demonstrated that the hydrogen atoms at the 3,4 and 4',5' positions of the 8-MOP molecule were lost following irradiation, suggesting that these two sites were involved in the photoproduct formed between tryptophan and 8-MOP. These studies strongly suggest that 8-MOP is capable of forming photoaddition products with tryptophan and with lens proteins as well as DNA in vivo, resulting in its permanent retention within the ocular lens.  相似文献   

11.
Abstract— 8-Methoxypsoralen (8-MOP) plus long-wavelength UV radiation (UVA, 320–400 nm) have been used to treat various diseases such as cutaneous T-cell lymphoma, systemic scleroderma, rheumatoid arthritis and rejection of heart transplants. However, the immunological mechanism of this treatment remains unknown. In this report, we investigated the effect of 8-MOP/UVA on the modulation of the immunogenicity of a T-cell leukemia cell line (RL ♂l cells). The results demonstrated that the stimulator function of the in vitro 8-MOP/UVA-treated RL♂ cells was enhanced in both RL ♂1-specific allogeneic and syngeneic immune responses. Furthermore, the enhancement of the immunogenicity of the 8-MOP/UVA-treated RL♂ cells was found to be strongly associated with the increase of intercellular adhesion molecule-1 expression on these 8-MOP/UVA-treated tumor cells. Therefore, our findings suggested that the alteration of the expression of the immune-related cell surface molecules might be an important effect of 8-MOP/UVA treatment on the elevation of the immunogenicity of the 8-MOP/UVA-treated tumor cells.  相似文献   

12.
The phototoxicity of 8-methoxythionepsoralen (8-MOTP) and 6-methylthione coumarin (6-MTC) when activated by UV-A has been investigated using a variety of Escherichia coli strains, Haemophilus influenzae transforming DNA and Escherichia coli pBR322 plasmid DNA. The results demonstrate that 8-MOTP is a strictly oxygen independent photosensitizer that is about 500-fold less efficient in forming lesions leading to equivalent lethality than is the parent compound from which it is derived (8-MOP). As is true for 8-MOP, 8-MOTP is capable of inducing histidine independent mutations in E. coli and inactivating transforming DNA consistent with DNA being a target for lesions induced by this molecule in the presence of UV-A. 6-MTC is a strongly oxygen dependent photosensitizer activated by UV-A when tested with either E. coli cells or transforming DNA in contrast to the parent compound (6-methylcoumarin; 6-MC) which is not phototoxic when treated with UV-A. These results imply that the membrane may be an important target leading to lethality. 6-MTC in the presence of UV-A can inactivate pBR322 plasmid and Haemophilus influenzae transforming DNA activity in vitro suggesting that DNA is a potential target for this molecule when activated by UV-A.  相似文献   

13.
We present methods for the determination of UVA-induced binding of 8-methoxypsoralen (8-MOP) to nucleic acids and protein and for a quantitative assay of radioactively labelled 8-MOP plus UVA induced DNA photoproducts in the yeast Saccharomyces cerevisiae. For the dose range up to 60 kJ m-2, with a wild-type survival of 1% or higher, binding to DNA is 100-fold and to RNA 10- to 20-fold more efficient than that to protein. Between 20% and 65% of the 8-MOP binds to macromolecules that are neither nucleic acids nor protein. The number of DNA-bound 8-MOP molecules for the haploid genome rises from 14 (unirradiated control) to 349 at the highest UVA exposure dose (60 kJ m-2). Gel chromatography reveals three types of DNA thymine photoproduct, the pyrone-side monoadducts, the furan-side monoadducts and the diadducts. Among these, pyrone-side monoadducts always constitute the smallest fraction, regardless of whether the treatment is with in vitro or in vivo 8-MOP plus UVA.  相似文献   

14.
Abstract— 8-Methoxypsoralen (8-MOP) plus high intensity long wavelength ultraviolet radiation (UV-A) is presently being used to induce remissions of psoriasis and mycosis fungoides. Previous studies demonstrated inhibition of DNA synthesis in circulating leukocytes from some patients during this therapy. The present study is designed to determine whether conditions of 8-MOP concentration and UV-A exposure attained during therapy might be sufficient to result directly in decreased lymphoid cell DNA synthesis and viability in vitro. Tritiated thymidine (3HTdR) incorporation and cell growth in suspension culture following UV-A exposure alone or with therapeutic concentrations of 8-MOP was examined in peripheral blood lymphocytes and in Ebstein-Barr virus transformed human lymphoblas-toid cell lines. UV-A exposure alone induced a dose-dependent inhibition of HTdR incorporation in both types of lymphoid cells (3000 J/m2 resulted in 77% of control 3HTdR incorporation). Pre-incubation with 0.1 μg/m/ 8-MOP before UV-A exposure induced a significantly greater inhibition of 3HTdR incorporation (3000 J/m2 resulted in 61% of control 3HTdR incorporation). Greater inhibition of 3HTdR incorporation was observed by preincubation of the lymphoblastoid cells with 1.0μg/mC 8-MOP (3000 J/m2 resulted in 41% of control) but not in the lymphocytes (3000 J/m2 resulted in 63% of control). The concentration of viable lymphoblastoid cells did not decrease below the original concentration after the highest dose of UV-A alone (29,000 J/m2) but preincubation with 0.1 μg/mC 8-MOP resulted in 40% survival after 3000 J/m2 (D37 approximately 3000 J/m2) and preincubation with 1.0 μg/ 8-MOP resulted in 0.6% survival after 3000 J/,2 (D37 approximately 800 J/m2). This study suggests that the low doses of 8-MOP and UV-A received by patients' lymphocytes may be sufficient to explain the decreased DNA synthesis found in their circulating leucocytes. The long term consequences of such damage remain to be determined.  相似文献   

15.
Abstract— The photobiological activity of the two monofunctional pyridopsoralens pyrido (3,4-c) psoralen (PyPs) and 7-methyl pyrido (3,4-c) psoralen (MePyPs) was studied in mammalian cells in vitro taking 8-methoxypsoralen (8-MOP) as a reference compound.
In the presence of 365-nm irradiation (UVA) MePyPs was found to be more effective than 8-MOP in terms of DNA photobinding capacity and inhibition of cell cloning ability in Chinese hamsterV–79 cells. As a function of UVA dose and of the number of total photoadducts induced MePyPs produced a higher frequency of 6-thioguanine resistant mutants than 8-MOP. PyPs showed an intermediate response for cell killing and mutation induction. At equal cytotoxic levels both monofunctional pyridopsoralens exhibited the same mutagenic activity as the Afunctional furocoumarin 8-MOP.
The antiproliferative effect being taken as indicative for an efficient photochemotherapeutic activity against psoriasis, the inhibition of cloning capacity induced by MePyPs plus UVA was studied in parallel on human skin fibroblasts. Such cells were more sensitive to 8-MOP photoadditions thanV–79 cells and even more so to MePyPs photoadditions. Data obtained on the rate of DNA semi conservative synthesis on both cell lines following treatments with the two compounds are in line with these observations.  相似文献   

16.
Abstract— Six different photosensitizers were compared for their ability to form cross-links in murine cellular DNA and murine cytomegalovirus DNA, in the presence of long wave UV radiation. The viral DNA was in the form of free DNA or intact virions. The compounds consisted of the linear furanocoumarins 8-methoxypsoralen (8-MOP) and isopimpinellin; the angular furanocoumarin, angelicin; the two furanochromones, visnagin and khellin; and the β-carboline alkaloid, harmine. Cross-linking was assessed by alkaline agarose gel electrophoresis and hydroxyapatite chromatography. 8-MOP produced extensive cross-linking (as expected), as did isopimpinellin. Visnagin produced less cross-linking, such that not all DNA molecules were affected at the concentrations used. Khellin, angelicin and harmine produced no detectable cross-linking. The same result was obtained for DNA which was treated in situ in the virion. To some degree there was a correlation between the amount of cross-linking and the relative potency of anti-MCMV infectivity. But other factors evidently contribute to the phototoxic effect of these compounds.  相似文献   

17.
The psoralens 8-methoxypsoralen (8-MOP), 4,5′,8-trimethylpsoralen (TMP) and 5-methoxypsoralen (5-MOP) find clinical application in PUVA (psoralen + UVA) therapy. PUVA treats skin diseases like psoriasis and atopic eczema. Psoralens target the DNA of cells. Upon photo-excitation psoralens bind to the DNA base thymine. This photo-binding was studied using steady-state UV/Vis and IR spectroscopy as well as nanosecond transient UV/Vis absorption. The experiments show that the photo-addition of 8-MOP and TMP involve the psoralen triplet state and a biradical intermediate. 5-MOP forms a structurally different photo-product. Its formation could not be traced by the present spectroscopic technique.  相似文献   

18.
Photopheresis is an extracorporeal form of photochemo-therapy with 8-methoxypsoralen (8-MOP) and UVA (PUVA). Patients ingest 8-MOP and then a psoralen-rich buffy coat is obtained by centrifugation and mixed with saline. This mixture is recirculated through a UVA radiation field and then reinfused. Photopheresis appears to be effective for several T cell-mediated disorders, because the treatment results in a specific immune response against the pathogenic clone of T cells involved. With PUVA therapy, the whole body of the patient is exposed to UVA, after ingestion of 8-MOP. Upon UVA exposure 8-MOP binds to, amongst others, DNA and induces DNA monoadducts and interstrand cross-links. As a result of these photoadducts photocarcinogenicity is a risk in PUVA. In PUVA for psoriasis, it proved that angular furocoumarins, although almost incapable of inducing DNA cross-links (less carcinogenic), are still effective. In order to determine if monoadducts induced by photopheresis could also be effective we used, specifically, 4,6,4'-trimethylangelicin (TMA). In this report, we compare the photodegradation of both TMA and 8-MOP under conditions relevant to the in vivo situation, as well as the effect both compounds have on the viability of rat lymphocytes as measured with the 3–(4,5-dimethylthia-zol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. We show that TMA did not induce immunosuppression in vivo , even after extensive irradiation. In addition a dose dependency of 8-MOPNVA versus the induced immune suppression was carried out. It was shown that there is a log doselresponse correlation of r = 0.9205.  相似文献   

19.
Abstract— Visible radiation can substantially influence the degree to which plant photosynthesis is inhibited by UV-B radiation. This study was designed to separate the immediate effects of visible radiation on UV-B photosynthetic inhibition from the indirect influence of visible irradiation on morphological and physiological properties of leaves during leaf development. Soybean plants were pretreated in growth chambers with either high or low visible irradiance (750 and 70 μmol m-2s-1 quantum flux in the 400–700 nm waveband, respectively) during the development of leaves used subsequently for UV irradiation. Test leaves still attached to the plant were exposed to 5 h of polychromatic UV-B irradiation and the photosynthetic capacity (net CO2 exchange) was determined before and after the UV irradiation. During the UV irradiation, plants from both pretreatment groups received either high or low visible flux. Development of leaves in the high visible flux pretreatment conditions resulted in thicker leaves, higher chlorophyll a/b ratios, more UV-absorbing pigments, and reduced sensitivity to the UV-B irradiation. However, higher visible flux during the UV-B irradiation resulted in greater depression of photosynthesis by the UV-B irradiation. The relative magnitude of photosynthetic depression under these treatment combinations was the same when photosynthesis was measured under either light-limited or light-saturated conditions.  相似文献   

20.
DIBF (5,7‐diiodo‐3‐butoxy‐6‐fluorone) is a visible light photosensitizer for diaryliodonium salts, the latter being used in cationic photopolymerizations. Although photopolymerization of cycloaliphatic epoxide resins can be initiated by direct excitation of UV‐absorbing diaryliodonium salts, such as (p‐octyloxy)phenyliodonium hexafluoroantimonate (OPPI), the short wavelengths required cause some practical problems. Sensitizers, of which DIBF is among the best, obviate the deep UV problem by allowing visible‐wavelength activation of the photoinitiator. Addition of 9,10‐diethoxyanthracene (AN 910 E) dramatically accelerates photopolymerization under visible irradiation of the DIBF/OPPI system. We report herein the transient spectroscopy of the photosensitizer DIBF and discuss likely mechanisms for sensitization of OPPI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号