首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have determined the on-site molecular Coulomb interaction energy U of a (C59N)2 bulk film and find values ranging from 1.10+/-0.10 eV for the highest occupied molecular orbital to 1.35+/-0.10 eV for the deeper lying orbitals, comparable to values found in C60. The on-site Coulomb interaction between a carbon core hole and valence electrons, Uc, is, however, substantially lower than in C60 at 1.35+/-0.07 eV. Resonant photoemission (RESPES) results show a weakened participator decay channel, especially around the N 1s threshold, where resonance of the highest occupied molecular orbital shoulder is absent. Near-edge x-ray absorption fine structure and constant initial state measurements, taken in parallel with the RESPES data, indicate, however, that matrix element effects cannot be ruled out.  相似文献   

2.
Using the DFT+U method, i.e., first principles density functional theory calculations with the inclusion of on-site Coulomb interaction, the effects of Pd doping on the O vacancy formation energy (E(vac)) in CeO(2) has been studied. We find that E(vac) is lowered from 3.0 eV in undoped ceria to 0.6 eV in the Pd-doped compound. Much of this decrease can be attributed to emerging Pd-induced gap states above the valence band and below the empty Ce 4f states. These localized defect states involve the Pd ion and its nearest neighbors, which are also the main acceptors of the extra electrons left on reduction. The effect of the Pd dopant on the geometric structure is very modest for CeO(2) but considerable for CeO(2-x).  相似文献   

3.
Using a coaxial cylindric electron spectrometer and an electrostatic ion energy analyzer in tandem, a direct measurement of the difference of the energy of convoy peak electron and the electron equivalent ion energy of protons emerging from the downstream surface of C, Au and Al foils is performed in the proton energy range from 60 to 250 keV. This measurement is made possible using the accepted evidence that for a gas target these energies are equal. It is found that also for the beam foil convoy peak electrons, within an experimental average uncertainty of about ±0.1 eV, there is no difference between these energies. If one accepts that the origin of convoy electrons is from inside the solid, the conclusion is that no retardation by the solid surface potential barrier, which is of the order of a few eV, is observed. This is attributed to the strong electron-ion Coulomb interaction which almost completely overshadows the force exerted on the electron by the field of the surface barrier.  相似文献   

4.
In this work we study the higher excited states of Helium Atom. The purpose is to evaluate Coulomb and exchange integral via spherical harmonics series. The Coulomb and exchange integrals energy shift is evaluated up to sixth order. This is the energy when the atom is perturbed by Coulomb potential between electrons. The energy levels obtained from both integrals are in agreement with the experimental data. For highly-excited states, the calculated energy approaches ?54.416?eV, in agreement with the graphical results from the book by Powell and Crasemann [1].  相似文献   

5.
The static and dynamical polarizabilities of the Hg-dimer are calculated by using a Hubbard Hamiltonian to describe the electronic structure. The Hamiltonian is diagonalized exactly within a subspace of second-quantized electronic states from which only multiply ionized atomic configurations have been excluded. With this approximation we can describe the most important electronic transitions including the effect of charge fluctuations. We analyze the polarizability as a function of the intraatomic Coulomb interaction which represents the repulsion between electrons. We obtain that this interaction results in strong electronic correlations in the excited states and increases the first excitation energy of the dimer by 0.8 eV in comparison to a calculation which neglects correlations, resulting in a better agreement with the experiment.  相似文献   

6.
Cross sections for electron-impact detachment and electron-impact dissociation of NCO- and NCS- were measured from about 3 to about 40 eV. The former are found to follow a classical prediction with a threshold energy of 9.1 +/- 0.1 eV for NCO- and 8.9 +/- 0.2 eV for NCS-. When the incoming electron binds to the monoanion, a short-lived dianion complex is formed, which is revealed as a resonance in the cross section. For NCO- a resonance is evident at 9.3 +/- 0.2 eV, which implies that the dianion lies above the monoanion by this amount of energy. In the case of NCS- two resonances are evident at 8.4 +/- 0.2 and 19.0 +/- 0.5 eV, respectively. The low-energy NCS dianion is less unstable than the dianion of NCO, which in turn is less unstable than the CN dianion (10-eV resonance). Thus the resonance shifts down in energy with the increasing size of the anion, a fact which is attributed to a decrease in Coulomb energy between the spatially separated electrons.  相似文献   

7.
The partial ionization cross section for the formation of SF(3) (+) fragment ions following electron impact on SF(6) is known to have a pronounced structure in the cross section curve slightly above 40 eV. We used the mass-analyzed ion kinetic energy (MIKE) scan technique to demonstrate the presence of a channel contributing to the SF(3) (+) partial ionization cross section that we attribute to the Coulomb explosion of doubly charged metastable SF(4) (2+) ions into two singly charged ions SF(3) (+) and F(+), with a threshold energy of about 45.5 eV. Thus the observed unusual shape of the SF(3) (+) partial ionization cross section is the result of two contributions, (i) the direct formation of SF(3) (+) fragment ions via dissociative ionization of SF(6) with a threshold energy of 22 eV and (ii) the Coulomb explosion of metastable SF(4) (2+) ions with a threshold energy of about 45.5 eV. A detailed analysis of the MIKE spectrum reveals an average kinetic energy release of about 5 eV in the Coulomb explosion of the SF(4) (2+) ions with evidence of a second channel corresponding to an average kinetic energy release of about 1.1 eV.  相似文献   

8.
Electrospray ionization and tandem mass spectrometry experiments have been used to study the fragmentation and electron-ion interactions of doubly charged zwitterionic clusters, [M(15) + 2H](2+) (where M = Glycine Betaine (GB), (CH(3))(3)N(+)CH(2)CO(2)(-), and Dimethylsulfonioacetate (DMSA), (CH(3))(2)S(+)CH(2)CO(2)(-)) which are close to the stability limit, i.e., the Coulomb repulsion of the charge within the cluster competes with attractive forces. The intercluster chemistry was studied using collision-induced dissociation (CID) and electron-induced dissociation (EID) in which the energy of the electrons has been varied from >0 to 30 eV. Experimental results suggest that the zwitterionic binding energy in the clusters follow the order GB > DMSA, which is consistent with theoretical calculations that highlight that the lower dipole moment of DMSA leads to a binding energy of DMSA that is 0.86 times smaller than that for GB. Multiply protonated clusters of both GB and DMSA dissociate through Coulomb explosion, which is in competition with neutral evaporation for DMSA. Electronic excitation of the cluster under EID conditions at higher electron energies >12 eV can lead to new intercluster reactions associated with bond cleavages where differences between the sulfur and nitrogen betaines are minor.  相似文献   

9.
An explicit expression is derived for the kinetic energy density, including the correlation contribution, in terms of the ground-state electron density for the two-electron Hookean atom. This model atom has the merit that while the electrons are tied to an origin by springs, the Coulomb interaction energy between the two electrons is fully incorporated.  相似文献   

10.
11.
Calculations for the crystalline energetic material RDX (1,3,5-trinitro-1,3,5-triazacyclohexane) yield the effective polarizability (17.2 angstroms3), local electric field tensor, effective dipole moment (9.40 D), and dipole-dipole energy (-27.2 kJ/mol). Fourier-transform techniques give the polarization energy P for a single charge in the perfect crystal as -1.14 eV; the charge-dipole energy W(D) is zero if the crystal carries no bulk dipole moment. Polarization energies for charge-transfer (CT) pairs combine with the Coulomb energy E(C) to give the screened Coulomb energy E(scr); screening is nearly isotropic with E(scr) approximately = E(C)2.6. For CT pairs W(D) reduces to a term deltaW(D) arising from the interaction of the charge on each ion with the change in dipole moment on the other ion relative to the neutral molecule. The dipole moments are calculated as 7.40 D for the neutral molecule and 6.84 D and 7.44 D for the anion and cation, giving the lowest two CT pairs at -1.34 eV and -0.94 eV. The changes in P and W(D) near a molecular vacancy yield traps with depths that reach 400 meV for single charges and 185 meV for the nearest-neighbor CT pair. Divacancies yield traps with depths nearly equal to the sum of those produced by the separate vacancies. These results are consistent with a mechanism in which detonation of RDX is initiated by mechanical generation of CT pairs that localize at vacancies, recombine, and release energy sufficient to break bonds; crystals of molecules with lower dipole moments should be less sensitive.  相似文献   

12.
In this paper, we investigated the primary reduction and oxygen replenishing processes over Mn substitutionally doped CeO(2)(111) surfaces by density functional theory with the on-site Coulomb correction (DFT + U). The results indicated that Mn doping could make the surface much more reducible and the adsorbed O(2) could be effectively activated to form superoxo (O(2)(-)) and/or peroxo species (O(2)(2-)). The Mn doping induced the Mn 3d-O 2p gap state instead of Ce 4f acting as an electrons acceptor and donor during the first oxygen vacancy formation and O(2) replenishing, which helped to lower the formation energy of the first and second oxygen vacancies to -0.46 eV and 1.40 eV, respectively. In contrast, the formation energy of a single oxygen vacancy in the pure ceria surface was 2.08 eV and only peroxo species were identified as the O(2) molecule adsorbed. Our work provides a theoretical and electronic insight into the catalytic redox processes of Mn doped ceria surfaces, which may help to understand the enhanced catalytic performances of MnO(x)-CeO(2) oxides, as reported in previous experimental works.  相似文献   

13.
The [M21+2H]2+ cluster of the zwitterion betaine, M = (CH3)3NCH2CO2, formed via electrospray ionisation (ESI), has been allowed to interact with electrons with energies ranging from >0 to 50 eV in a Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometer. The types of gas‐phase electron‐induced dissociation (EID) reactions observed are dependent on the energy of the electrons. In the low‐energy region up to 10 eV, electrons are mainly captured, forming the charge‐reduced species, {[M21+2H]+ . }*, in an excited state, which stabilises via the ejection of an H atom and one or more neutral betaines. In the higher energy region, above 12 eV, a Coulomb explosion of the multiply charged clusters is observed in highly asymmetric fission with singly charged fragments carrying away more than 70% of the parent mass. Neutral betaine evaporation is also observed in this energy region. In addition, a series of singly charged fragments appears which arise from C? X bond cleavage reactions, including decarboxylation and CH3 group transfer. These latter reactions may arise from access of electronic excited states of the precursor ions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
《中国化学会会志》2017,64(4):379-384
Electronic transport properties in an Al cluster are investigated theoretically in this paper. We propose a possible illustration of Coulomb blockade based on variable electrostatic potential (ESP ). Density functional theory (DFT ) was used to achieve the global minimum structure and wave function for analyzing the ESP and density of states (DOS ) of Al68 in different charged states. Al68 is able to contain multiple electrons. According to the calculation of systematic energy and surface ESP, respectively, the surface of Al68 presents a 0–6.33 eV ESP barrier after electron injection, which is 0 eV at first. The probability density of flow of electrons was calculated under one‐dimensional model with double barriers. Expected results were obtained, containing a nonlinear relationship between J and V and flow density steps. Moreover, an assumption is proposed associated with nonlinear conductance phenomenon of zero‐dimensional nanomaterials. Significantly, Al films with different thicknesses were prepared by the low vacuum physical vapor deposition (LVPVD ) method, exhibiting novel fluorescent behaviors. In addition, the I–V curve of a 25‐nm Al film exhibited two steps at 7 and 27 V, respectively, which meant that the step effect was caused by Coulomb blockade, in accordance with the theoretical calculation.  相似文献   

15.
The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 μA) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 ± 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.  相似文献   

16.
We have used density-functional theory to investigate (111), (110), (210), (211), (100), and (310) surfaces of ceria (CeO2). Compared with previous interatomic-potential-based studies, our calculations reported a slightly different relative stability ordering and significantly lower surface energies for the stoichiometric surfaces. Using a defect model, the surface stabilities were evaluated as functions of oxygen partial pressure and temperature. Our investigations were restricted to ideal surface terminations, without considering defect formation on those surfaces. We found that at 300 K, the stoichiometric (111) has the lowest free energy for a wide range of oxygen partial pressures up to 1 atm, and only at ultrahigh vacuum does the Ce-terminated (111) becomes the most stable one. The transition point for the Ce-terminated (111) surfaces moves to higher oxygen partial pressures when temperature increases. To improve the prediction of electron density of states, we used the local-density approximation plus U(J) correction method to correct the on-site Coulomb correlation and exchange interaction due to the strongly localized Ce-4f electrons. The optimal parameter combination of U = 7 eV and J = 0.7 eV was found to improve the O 2p-Ce 4f gap without much degradation of ground-state bulk properties or the O 2p-Ce 5d gap. The bulk and surface electronic structures were then analyzed based on the improved density of states.  相似文献   

17.
In this study, it is shown that two added, excess electrons with opposite spins in one‐dimensional crystal lattices with quartic anharmonicity may form a bisolectron, which is a localized bound state of the paired electrons to a soliton‐like lattice deformation. It is also shown that when the Coulomb repulsion is included, the wave function of the bisolectron has two maxima, and such a state is stable in lattices with strong enough electron (phonon/soliton)–lattice coupling. Furthermore, the energy of the bisolectron is shown to be lower than the energy of the state with two separate, independent electrons, as even with account of the Coulomb repulsion the bisolectron binding energy is positive. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
This is the first paper in a series of four dealing with the adsorption site, electronic structure, and chemistry of small Au clusters, Au(n) (n=1-7), supported on stoichiometric, partially reduced, or partially hydroxylated rutile TiO(2)(110) surfaces. Analysis of the electronic structure reveals that the main contribution to the binding energy is the overlap between the highest occupied molecular orbitals of Au clusters and the Kohn-Sham orbitals localized on the bridging and the in-plane oxygen of the rutile TiO(2)(110) surface. The structure of adsorbed Au(n) differs from that in the gas phase mostly because the cluster wants to maximize this orbital overlap and to increase the number of Au-O bonds. For example, the equilibrium structures of Au(5) and Au(7) are planar in the gas phase, while the adsorbed Au(5) has a distorted two-dimensional structure and the adsorbed Au(7) is three-dimensional. The dissociation of an adsorbed cluster into two adsorbed fragments is endothermic, for all clusters, by at least 0.8 eV. This does not mean that the gas-phase clusters hitting the surface with kinetic energy greater than 0.8 eV will fragment. To place enough energy in the reaction coordinate for fragmentation, the impact kinetic energy needs to be substantially higher than 0.8 eV. We have also calculated the interaction energy between all pairs of Au clusters. These interactions are small except when a Au monomer is coadsorbed with a Au(n) with odd n. In this case the interaction energy is of the order of 0.7 eV and the two clusters interact through the support even when they are fairly far apart. This happens because the adsorption of a Au(n) cluster places electrons in the states of the bottom of the conduction band and these electrons help the Au monomer to bind to the five-coordinated Ti atoms on the surface.  相似文献   

19.
A local model is set up for the conductivity in alkali-doped polyacetylene (PA) based on results of ab initio and semiempirical calculations. At low doping levels, solitons and polarons appear naturally in the (nondegenerate) ground state. Alkali atoms donate their valence electrons to neutral solitons, which have the highest electron affinity in the PA structure. Due to the high polarizability of the PA chains, there is a charge buildup on a few carbon atoms close to the alkali ion. At the same time, a new soliton, screened from the alkali ion, is formed some distance away from the latter. This solition may migrate through the PA polymer partly by hopping for one chain segment to another (Ea ≥ 0.15 eV) and partly by soliton motion. In the calculation of the spectra, we used geometry-optimized structures and configuration interaction (i.e., taking into account electron-lattice interaction and explicit Coulomb correlation) and obtained good agreement with experimental spectra. As the concentration of alkali is increased, absorption occurs at energies below 1 eV. At higher doping levels, corresponding to a few mol%, the electrons delocalize over many alkali spacings and the trapping capability of the polymer decreases the conductivity becomes bandlike. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63: 655–665, 1997  相似文献   

20.
The starting point of this contribution is a discussion of the concept of exchange interactions and its relation to chemical bonding and valence. Then, a class of phenomena characterized by weak chemical bonding (?1eV) in solids and molecules is analyzed in more detail, with “superexchange” in insulating solids with paramagnetic 3d-cations serving as prototype. A model of “effective electrons” is developed for weak bonding on the basis of exchange perturbation theory, taking full account of the Pauli principle. The model is applied to: (i) magnetic interactions in solids (interaction energy 10?2 to 10?4 eV); (ii) stability of noble-gas halides (binding energy ≈ 1eV); and (iii) rotational barriers in simple molecules (barrier heights of several 0.1 eV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号