首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of varying the applied acoustic power on the extent to which the addition of water-soluble solutes affect the intensity of aqueous multibubble sonoluminescence (MBSL) has been investigated. Under most of the experimental conditions used, the addition of aliphatic alcohols to aqueous solutions was found to suppress the MBSL intensity, although an enhancement of the MBSL intensity was also observed under certain conditions. In contrast, the presence of an anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solutions generally enhanced the observed MBSL intensity. For a series of aliphatic alcohols and SDS, a strong dependence of the MBSL intensity on the applied acoustic power (in the range of 0.78-1.61 W/cm(2)) at 358 kHz was observed. The relative SL quenching was significantly higher at higher acoustic powers for the alcohol solutions, whereas the relative SL enhancement was lower at higher acoustic powers in SDS solutions. These observations have been interpreted in terms of a combination of material evaporation into the bubble, rectified diffusion, bubble clustering and bubble-bubble coalescence.  相似文献   

2.
The sonication of an aqueous solution generates cavitation bubbles, which may coalesce and produce larger bubbles. This paper examines the effect of surface-active solutes on such bubble coalescence in an ultrasonic field. A novel capillary system has been designed to measure the change in the total volume resulting from the sonication of aqueous solutions with 515 kHz ultrasound pulses. This volume change reflects the total volume of larger gas bubbles generated by the coalescence of cavitation bubbles during the sonication process. The total volume of bubbles generated is reduced when surface-active solutes are present. We have proposed that this decrease in the total bubble volume results from the inhibition of bubble coalescence brought about by the surface-active solutes. The observed results revealed similarities with bubble coalescence data reported in the literature in the absence of ultrasound. It was found that for uncharged and zwitterionic surface-active solutes, the extent of bubble coalescence is affected by the surface activity of the solutes. The addition of 0.1 M NaCl to such solutes had no effect on the extent of bubble coalescence. Conversely, for charged surface-active solutes, the extent of bubble coalescence appears to be dominated by electrostatic effects. The addition of 0.1 M NaCl to charged surfactant solutions was observed to increase the total bubble volume close to that of the zwitterionic surfactant. This suggests the involvement of electrostatic interactions between cavitation bubbles in the presence of charged surfactants in the solution.  相似文献   

3.
It has previously been reported that the addition of low concentrations of ionic surfactants enhances the steady-state sonoluminescence (SL) intensity relative to water (Ashokkumar; et al. J. Phys. Chem. B 1997, 101, 10845). In the current study, both sonoluminescence and passive cavitation detection (PCD) were used to examine the acoustic cavitation field generated at different acoustic pulse lengths in the presence of an anionic surfactant, sodium dodecyl sulfate (SDS). A decrease in the SL intensity was observed in the presence of low concentrations of SDS and short acoustic pulse lengths. Under these conditions, the inhibition of bubble coalescence by SDS leads to a population of smaller bubbles, which dissolve during the pulse "off time". As the concentration of surfactant was increased at this pulse length, an increase in the acoustic cavitation activity was observed. This increase is partly attributed to enhanced growth rate of the bubbles by rectified diffusion. Conversely, at long pulse lengths acoustic cavitation activity was enhanced at low SDS concentrations as a larger number of the smaller bubbles could survive the pulse "off time". The effect of reduced acoustic shielding and an increase in the "active" bubble population due to electrostatic repulsion between bubbles are also significant in this case. Finally, as the surfactant concentration was increased further, the effect of electrostatic induced impedance shielding or reclustering dominates, resulting in a decrease in the SL intensity.  相似文献   

4.
Solute-induced quenching of sonoluminescence (SL) is reported for aqueous solutions of two homologous series of methyl esters and ketones using low (20 kHz) and high (515 kHz) ultrasound frequencies. SL data at 20 kHz from aqueous solutions containing alcohols and carboxylic acids are also presented to compare with previously published results at 515 kHz. In addition to supporting the previous findings on the existence of stable and transient bubbles at 515 and 20 kHz, respectively, the results suggest that the hydrogen-bonding characteristics of the solutes also play a major role in the extent of SL quenching. An increase in the SL intensity at low concentrations for most of the solutes suggests that these solutes increase the number of "active" bubbles by hindering the coalescence of bubbles. It is concluded that the effect of the solutes on the SL signal from aqueous solutions at both frequencies is primarily due to the balance of two factors, namely, the incorporation of solute within the bubble, leading to SL quenching, and the prevention of coalescence of the bubbles, leading to SL enhancement. At the higher frequency, SL quenching by the solutes is the main influence on the emission yield. However, at the lower frequency, hindrance to coalescence by the solutes dominates at lower concentrations and leads to SL enhancement. The implications of these results for optimizing conditions for aqueous sonochemical reactions are discussed.  相似文献   

5.
The effect that surface-active solutes, such as aliphatic alcohols and sodium dodecyl sulfate (SDS), have on the extent of bubble coalescence in liquids under different sonication conditions has been investigated by measuring the volume change of the solution following a period of sonication. In general, the adsorption of surface-active solutes onto the bubble surface retards bubble coalescence. Within the limitations of the measurement method and the systems studied, bubble coalescence does not appear to be dependent on the applied acoustic power. Also, varying the applied acoustic frequency has a minimal effect on the extent of bubble coalescence in systems where long-range electrostatic repulsion between bubbles, imparted by the adsorbed surface-active solutes, dominates. However, when short-range steric repulsion (or other short-range repulsive forces) is the primary factor in inhibiting bubble coalescence, the dependence on the applied acoustic frequency becomes apparent, with less coalescence inhibition at higher frequencies. It is also concluded that SDS does not reach an equilibrium adsorption level at the bubble/solution interface under the sonication conditions used. On the basis of this conclusion, a method is proposed for estimating nonequilibrium surface excess values for solutes that do not fully equilibrate with the bubble/solution interface during sonication. For the case of SDS in the presence of excess NaCl, the method was further employed to estimate the maximum lifetime of bubbles in a multibubble field. It was concluded that an acoustic bubble in a multibubble field has a finite lifetime, and that this lifetime decreases with increasing applied frequency, ranging from up to 0.35 +/- 0.05 ms for 213 kHz to 0.10 +/- 0.05 ms for 1062 kHz. These estimated lifetimes equate to a bubble in a multibubble field undergoing an upper limit of 50-200 oscillations over its lifetime for applied ultrasound frequencies between 200 kHz and 1 MHz.  相似文献   

6.
The multibubble sonoluminescence (MBSL) emission intensity from aqueous solutions containing simple aliphatic organic acids (RCOOH) and bases (RNH2) and mixtures of the two types of solutes has been examined as a function of pH. In solutions containing either an organic acid or base, under pH conditions where the solutes are predominately in their ionized form (i.e., RCOO- and RNH3+), the MBSL intensity is identical with that obtained in pure water. Alternatively, under pH conditions where the solutes are in their un-ionized form the MBSL intensity is suppressed. However, in solute mixtures of RCOO- and RNH3+ in the pH range of 7 to 9, the MBSL intensity was significantly suppressed relative to that from water. To explain the results of the mixed solute system it has been postulated that when the bubble/solution interface experiences the extreme temperature conditions that accompany bubble collapse, proton transfer occurs between acid-base ion-pair complexes, [RCOO-...RNH3+], adsorbed at the bubble/solution interface. The neutral forms of the solutes then evaporate into the bubble during its expansion phase and through a complex series of events, over a number of bubble oscillations, reduce the core temperature of the collapsing bubble and hence the SL intensity.  相似文献   

7.
We report the effects of electrolytes on bubble coalescence in nonaqueous solvents methanol, formamide, propylene carbonate, and dimethylsulfoxide (DMSO). Results in these solvents are compared to the ion-specific bubble coalescence inhibition observed in aqueous electrolyte solutions, which is predicted by simple, empirical ion combining rules. Coalescence inhibition by electrolytes is observed in all solvents, at a lower concentration range (0.01 M to 0.1M) to that observed in water. Formamide shows ion-specific salt effects dependent upon ion combinations in a way analogous to the combining rules observed in water. Bubble coalescence in propylene carbonate is also consistent with ion-combining rules, but the ion assignments differ to those for water. In both methanol and DMSO all salts used are found to inhibit bubble coalescence. Our results show that electrolytes influence bubble coalescence in a rich and complex way, but with notable similarities across all solvents tested. Coalescence is influenced by the drainage of fluid between two bubbles to form a film and then the rupture of the film and one might expect that these processes will vary dramatically between solvents. The similarities in behavior we observe show that coalescence inhibition is unlikely to be related to the surface forces present but is perhaps related to the dynamic thinning and rupture of the liquid film through the hydrodynamic boundary condition.  相似文献   

8.
The interaction of pairs of bubbles with equal diameters grown on adjacent capillaries in aqueous magnesium sulfate solutions is observed for varying electrolyte concentrations and bubble diameters. As in previous investigations, a sharp transition from coalescence to bubble detachment without coalescence is observed with increasing electrolyte concentration. The critical electrolyte concentration for this transition is found to increase with decreasing bubble diameter for bubble diameters of 1.4 to 4.2 mm.  相似文献   

9.
A simple method is described for determining the size of sonoluminescence bubbles generated by acoustic cavitation. The change in the intensity of sonoluminescence, from 4 ms pulses of 515 kHz ultrasound, as a function of the "off" time between acoustic pulses, is the basis of the method. The bubble size determined in water was in the range of 2.8-3.7 mum.  相似文献   

10.
Bubble size is used to characterize not only bubble-specific interfacial area but also bubble coalescence in a foam column. The bubble size distributions were obtained in a continuous foam fractionation process for concentrating ovalbumin using a developed photoelectric probe. When the continuous process reached steady state, the bubble size distribution pattern remained stable. Bubble size distribution data above (+1 cm) or below (-1 cm) the bulk liquid-foam interface showed symmetry along the diameter of the column (14 cm ID). The bubble size distribution was affected by the column wall. The nearly constant protein concentration distribution across the column cross-section indicated that the bubble flow distribution approached a flat profile across the column. A log-normal bubble distribution pattern best fit the weighted range of bubbles in the column at column lengths above and below the liquid-foam interface. These observations may prove to be useful in understanding the mechanisms underlying the foam fractionation of proteins.  相似文献   

11.
Factors influencing bubble coalescence in surfactant-free aqueous electrolyte solutions are considered in this compilation of literature results. These factors include viscous and inertial thin film drainage, surface deformation, surface elasticity, mobility or otherwise of the air-water interface, and disjoining pressure. Several models from the literature are discussed, with particular attention paid to predictions of transitions between regions where behaviour is qualitatively different. The transitions are collated onto a single chart with salt concentration and bubble approach speed as the axes. This creates a map of the regions in which different mechanisms operate, giving an overall picture of bubble coalescence behaviour over a wide range of concentration and speed. Only mm-size bubbles in water and NaCl solutions are discussed in this initial effort at creating such a map. Data on bubble coalescence or non-coalescence are collected from the literature and plotted on the same map, generally aligning well with the predicted transitions and thus providing support for the theoretical reasoning that went into creating the coalescence map.  相似文献   

12.
Solutions of LiCl and of NaCl in ultrapure water were studied through Rayleigh/Brillouin scattering as a function of the concentration (molarity, M) of dissolved salt from 0.2 M to extremely low concentration (2 × 10(-17) M). The Landau-Placzek ratio, R/B, of the Rayleigh scattering intensity over the total Brillouin was measured thanks to the dynamically controlled stability of the used Fabry-Perot interferometer. It was observed that the R/B ratio follows two stages as a function of increasing dilution rate: after a strong decrease between 0.2 M and 2 × 10(-5) M, it increases to reach a maximum between 10(-9) M and 10(-16) M. The first stage corresponds to the decrease of the Rayleigh scattering by the ion concentration fluctuations with the decrease of salt concentration. The second stage, at lower concentrations, is consistent with the increase of the Rayleigh scattering by long-lived sub-microscopic bubbles with the decrease of ion concentration. The origin of these sub-microscopic bubbles is the shaking of the solutions, which was carried out after each centesimal dilution. The very long lifetime of the sub-microscopic bubbles and the effects of aging originate in the electric charge of bubbles. The increase of R/B with the decrease of the low salt concentration corresponds to the increase of the sub-microscopic bubble size with the decrease of concentration, which is imposed by the bubble stability due to the covering of the surface bubble by negative ions.  相似文献   

13.
The rate of shrinkage of air bubbles, of initial radius from 50 to 200 microm, injected beneath a planar air-water interface has been measured. Bubbles were stabilized in solutions of 0.05 wt% gelatin or pure beta-lactoglobulin. It has been observed that small size differences between two closely spaced or touching bubbles result in markedly divergent rates of shrinkage for the two. By studying a number of different initial bubble configurations, it is demonstrated that the overall change in bubble size distribution is strongly dependent on local, interbubble gas diffusion. In this respect, the strong tendency for the gelatin-stabilized bubbles to aggregate and shrink, while remaining in contact, produced patterns of disproportionation significantly different from those observed with beta-lactoglobulin. In beta-lactoglobulin solutions, it was usually found that bubbles initially in contact shrank away from each other with time, becoming increasingly isolated as a result. A theoretical approach that can exactly incorporate the perturbation of local diffusion fluxes due to the proximity of two bubbles is presented. This enables one to map a "stability diagram" that delineates regions where the larger bubble of a pair will either shrink or grow, according to the relative size of the bubbles and their separation. Theoretical calculations show that it is possible for a bubble to exhibit more complex shrinkage behavior than is predicted by a mean field approach or the Lifshitz, Slyozov, and Wagner (LSW) theory of Ostwald ripening for dilute systems. The inclusion of dilatational elasticity in the theoretical model introduces additional complications, which are also briefly discussed.  相似文献   

14.
The interaction between two bubbles coated with glass particles in the presence of a cationic surfactant (cetyltrimethylammonium bromide, CTAB) was studied experimentally. The time taken for two bubbles to coalesce was determined as a function of the fractional coverage of the surface by particles. The results suggested that the coalescence time increases with the bubble surface coverage. Interestingly, it was found that although the particles did not have any physical role in film rupture at low surface coverage, they still added resistance to film drainage. For particle-loaded bubbles, the initial resistance was due to the lateral capillary interactions between particles on the interface, which hold the particles firmly together. The coalescence dynamics of bubbles was also observed to be affected by the presence of attached particles.  相似文献   

15.
This paper is concerned with the detachment of particles from coalescing bubble pairs. Two bubbles were generated at adjacent capillaries and coated with hydrophobic glass particles of mean diameter 66 μm. The bubbles were then positioned next to each other until the thin liquid film between them ruptured. The particles that dropped from the bubble surface during the coalescence process were collected and measured. The coalescence process was very vigorous and observations showed that particles detached from the bubble surfaces as a result of the oscillations caused by coalescence. The attached particles themselves and, to some extent the presence of the surfactant had a damping affect on the bubble oscillation, which played a decisive role on the particle detachment phenomena. The behaviour of particles on the surfaces of the bubbles during coalescence was described, and implications of results for the flotation process were discussed.  相似文献   

16.
Bubble coalescence behavior in aqueous electrolyte (MgSO(4), NaCl, KCl, HCl, H(2)SO(4)) solutions exposed to an ultrasound field (213 kHz) has been examined. The extent of coalescence was found to be dependent on electrolyte type and concentration, and could be directly linked to the amount of solubilized gas (He, Ar, air) in solution for the conditions used. No evidence of specific ion effects in acoustic bubble coalescence was found. The results have been compared with several previous coalescence studies on bubbles in aqueous electrolyte and aliphatic alcohol solutions in the absence of an ultrasound field. It is concluded that the impedance of bubble coalescence by electrolytes observed in a number of studies is the result of dynamic processes involving several key steps. First, ions (or more likely, ion-pairs) are required to adsorb at the gas/solution interface, a process that takes longer than 0.5 ms and probably fractions of a second. At a sufficient interfacial loading (estimated to be less than 1-2% monolayer coverage) of the adsorbed species, the hydrodynamic boundary condition at the bubble/solution interface switches from tangentially mobile (with zero shear stress) to tangentially immobile, commensurate with that of a solid-liquid interface. This condition is the result of spatially nonuniform coverage of the surface by solute molecules and the ensuing generation of surface tension gradients. This change reduces the film drainage rate between interacting bubbles, thereby reducing the relative rate of bubble coalescence. We have identified this point of immobilization of tangential interfacial fluid flow with the "critical transition concentration" that has been widely observed for electrolytes and nonelectrolytes. We also present arguments to support the speculation that in aqueous electrolyte solutions the adsorbed surface species responsible for the immobilization of the interface is an ion-pair complex.  相似文献   

17.
The drainage of thin liquid films between colliding bubbles is strongly influenced by the boundary conditions at the air–liquid interface. Theoretically, the interface should not resist any tangential stress (fully mobile) in a clean water system, resulting in very fast film drainage and coalescence between bubbles within milliseconds. In reality, under most experimental and industrial conditions, the presence of impurities or surfactants can immobilize the interface and significantly hinder bubble coalescence by several orders of magnitude. In this opinion, we introduce the recent progress on understanding the boundary conditions at the air–water interface, and how they may affect the outcome of bubble collisions. The transition from mobile to immobile boundary conditions in the presence of contaminations is discussed. Despite the considerable recent progress, there are still experimental and theoretical challenges remaining on this topic, for example, finding the mechanism for hindered bubble coalescence by high salt concentrations.  相似文献   

18.
Results on bubble coalescences from the space experiment of thermocapillary bubble migration conducted on board the Chinese 22nd recoverable satellite are presented in this paper. Some coalescences of large spherical bubbles under microgravity are observed through bubbles staying at the upper side of the test cell. The data of bubble coalescence time are recorded and compared with theoretical predictions, which is based on a theory to describe the tendency of coalescence connected to chemical potential difference. It is implied that the theory is applicable for the experimental data of bubble coalescence. Moreover, the angle between the line of two bubble centers and temperature gradient falled mostly in the range 20 degrees -40 degrees .  相似文献   

19.
The ion specificity of bubble-bubble interactions in water remains unexplained. Whatever their valence all ion pairs either completely inhibit bubble coalescence or have no effect whatever. The phenomenon appears unrelated to Hofmeister specificity. Salts which inhibit coalescence enable the formation of a high density bubble column evaporator (BCE). If hot gas bubbles are injected into the bubble column evaporator at a significantly higher temperature than the water, the hot bubble surfaces can be used to produce thermal effects in dissolved and dispersed solutes. These two properties can be exploited for a wide range of applications. Among these, high temperature aqueous reactions catalyzed at low solution temperatures, measurement of enthalpies of vaporization of concentrated salt solutions, wastewater treatments by sterilization and de-watering and desalination are a few.  相似文献   

20.
Aeration of emulsions by whipping   总被引:9,自引:0,他引:9  
During aeration of food emulsions such as dairy cream and ice cream, small gas bubbles are introduced, which are often stabilized by a layer of adsorbed emulsion droplets. It is shown that the maximum achievable volume of gas bubbles that can be incorporated by whipping depends on the effectiveness of the introduction of gas during the first stage of whipping and is furthermore limited by packing constraints. The main factors relevant for the latter limitation are the thickness of the coating of emulsion droplets at the bubble surface, the ratio between the droplet and bubble radii, and the fat content of the emulsion. It is hypothesized that, during whipping, a dynamic process of bubble break-up and coalescence adjusts the average bubble size and the volume of gas incorporated in the foam to the constraint of close packing of the bubbles. The consequences of this mechanism for whipping of emulsions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号