首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotube was used to carburize the surface of medium carbon steel and mild steel, respectively, by means of laser surface remelting. The slurry of carbon nanotube of ethanol was coated on the surface of the materials prior to laser irradiation. Microstructures, microhardness and wear property of the surface layers treated by different laser performance parameters were studied. Graphite coating was also used for carburizing. The results showed that both carbon nanotube and graphite were dissolved in the surface molten layer, leading a carburized hardening layer on the surface of the substrate. However, different microstructures formed in the carburizing layers, depending mainly on the type of carburization materials, carbon nanotube or graphite. The carbon nanotube hardening layer exhibits a little higher hardness than the graphite hardening layer. The carburized layer greatly increases the wear resistance of the base material.  相似文献   

2.
In this paper, we described a large-scale synthesis method of the polyoxometalates (POMs) nanoparticles and the modification of carbon nanotube (CNTs) through a chemical modified approach. Four types of POMs nanoparticles were prepared by a one-step solid-state reaction at room temperature and characterized by IR, elemental analyses, XRD and TEM. These uniform nanoparticles have an average size of 8-10 nm. Furthermore, based on chemical adsorption between POMs and carboxylic acid groups, which were introduced to the CNTs by adding dilute nitric acid, POMs nanoparticles were successfully located on the CNTs as the modifier.  相似文献   

3.
Shih-Jye Sun 《Physics letters. A》2008,372(19):3493-3495
We simulate the conduction variation of a gas-adsorbed carbon nanotube by a hybridization model, which has been previously used to simulate the gas adsorption on a nanographite ribbon. Two energy parameters, hybridization interaction and orbital energy level, are employed to simulate and distinguish the adsorbed gases. Two mechanisms, carrier localization and charge distribution, coexist in the gas adsorption process and provide a qualitative explanation for the current increase or decrease in gas adsorption experiments for the carbon nanotube.  相似文献   

4.
We have compared the adsorption behaviors between single-walled carbon nanotube (SWCNT) powders and thin films with amino acids such as phenylalanine and glycine by using the X-ray absorption near edge structure (XANES) spectroscopy. On SWCNT powders very weak adsorption occurs as confirmed also by studies at high solution concentrations. The comparison of the adsorption behaviors with previous reports for thin films of SWCNTs shows that, due to their compact structure, thin films favor the adsorption of amino acids and represent themselves good candidate for a reliable evaluation of the interaction among amino acids and SWCNTs.  相似文献   

5.
Oxygen-driven unzipping of graphitic materials   总被引:1,自引:0,他引:1  
Optical microscope images of graphite oxide (GO) reveal the occurrence of fault lines resulting from the oxidative processes. The fault lines and cracks of GO are also responsible for their much smaller size compared with the starting graphite materials. We propose an unzipping mechanism to explain the formation of cracks on GO and cutting of carbon nanotubes in an oxidizing acid. GO unzipping is initiated by the strain generated by the cooperative alignment of epoxy groups on a carbon lattice. We employ two small GO platelets to show that through the binding of a new epoxy group or the hopping of a nearby existing epoxy group, the unzipping process can be continued during the oxidative process of graphite. The same epoxy group binding pattern is also likely to be present in an oxidized carbon nanotube and cause its breakup.  相似文献   

6.
In this study we were modeling the adsorption of the amino acid methionine on a graphite surface using molecular mechanics calculations. We were employing two different force fields, namely MM+ and AMBER, and considering the molecule in its non-ionic and zwitterionic form. The surface was modeled as a single sheet of graphite. We found that each of the force fields delivers qualitative consistency with experimental results, but the AMBER force field with the parameter set of AMBER3 leads to the best quantitative agreement regarding adsorption energy, bonding energies and distances.  相似文献   

7.
质子化改性壳聚糖吸附硫酸根行为及其光谱分析   总被引:3,自引:0,他引:3  
壳聚糖(CTS)具有活性基团氨基和羟基,可用作吸附剂。在酸性介质中其氨基容易质子化形成氨基正离子,具有吸附阴离子的能力,同时也导致吸附剂的溶解流失;进行交联处理可提高吸附剂的酸稳定性,但也导致吸附性能的下降。因此可进行氨基保护后进行交联以改善其酸溶液稳定性,再脱去氨基保护剂进行质子化处理以获得较好的对阴离子的吸附性能。以甲醛为氨基保护剂,戊二醛为交联剂,通过反相悬浮法制得交联壳聚糖(CCTS),对其进行质子化制得质子化改性壳聚糖吸附剂(P-CCTS),并首次将该吸附剂用于处理水溶液中的硫酸根离子。通过静态吸附实验,考察了质子化改性壳聚糖对硫酸根的吸附性能;利用X射线能谱元素分析(EDS)和红外光谱分析(FTIR)对该吸附剂的制备以及对硫酸根离子的吸附过程进行了表征,探索了交联反应和吸附反应的发生机理。实验结果表明:质子化改性壳聚糖吸附剂与交联壳聚糖相比,其对硫酸根离子的吸附性能提高了约10倍;甲醛、戊二醛的醛基与壳聚糖的交联反应主要发生在的氨基(—NH2)和部分一级羟基(C6—OH)上;质子化过程中交联壳聚糖的氨基与质子化剂形成了氯化壳聚糖氨盐;对硫酸根离子的吸附则主要是质子化氨基上氯离子与硫酸根离子的交换作用。  相似文献   

8.
王亮  张朝晖 《物理学报》2009,58(10):7147-7150
利用基于密度泛函理论的计算方法,研究了处于石墨(HOPG)表面的半导体性单壁碳纳米管,发现碳纳米管下面的石墨受碳管的作用向下凹陷,而纳米管本身虽然保持其形状不变,但它的电子态受石墨衬底影响,造成导带下移,禁带宽度明显减小. 关键词: 单壁碳纳米管 密度泛函理论 局域密度近似方法  相似文献   

9.
Nonequilibrium processes play a key role in the adsorption kinetics of macromolecules. It is expected that the competition between transport of polymer towards an interface and its subsequent spreading has a significant influence on the adsorbed amount. An increase of the transport rate can lead to an increase of the adsorbed amount, especially when the polymer has too little time to spread at the interface. In this study we present both molecular dynamics simulations and analytical calculations to describe some aspects of the adsorption kinetics. From MD simulations on a poly(ethylene oxide) chain in vacuum near a graphite surface, we conclude that the spreading process can, in first approximation, be described by either a simple exponential function or by first-order reaction kinetics. Combining these spreading models with the transport equations for two different geometries (stagnation-point flow and overflowing cylinder) we are able to derive analytical equations for the adsorption kinetics of polymers at solid-liquid and at liquid-fluid interfaces. Received: 18 July 1997 / Received in final form: 27 October 1997 / Accepted: 6 November 1997  相似文献   

10.
Various filled carbon nanotubes have recently been successfully produced by the arc-discharge method by doping a 99.4% graphite anode with a transition metal like Cr, Ni, a rare earth like Yb, Dy, or a covalent element like S, Ge. In this work, the structural characteristics of these encapsulated nanowires were studied by High Resolution Transmission Electron Microscopy and their chemical composition was investigated using Electron Energy-Loss Spectroscopy with high spatial resolution: this analysis mode provides elemental concentration profiles across or along the filled nanotubes. Except in the case of Ge for which only pure Ge fillings were identified, surprising amounts of sulfur, which was present as an impurity ( 0.25%) in the graphite rods, were found within numerous filling materials. When using high purity carbon rods, no filled nanotube was obtained. We chose the case of Cr to clearly evidence that the addition of sulfur in catalytic quantity is responsible for the formation of filled nanotubes, including sulfur free encapsulated nanowires. A growth mechanism based on a catalytic process involving three elements, i.e. carbon, a metal and sulfur, and taking into account the experimental results is proposed. Received: 20 January 1998 / Received in final form and accepted: 9 April 1998  相似文献   

11.
We have experimentally determined the binding energies of Xe, CH4, and Ne on samples of closed-ended single-wall nanotube (SWNT) bundles. We find values for these quantities which are larger by approximately 75% on the SWNT samples than the values found for the same adsorbates on planar graphite. We have also determined the monolayer capacity of a SWNT sample using Xe and Ne adsorption. A comparison of all of our results leads us to conclude that none of the gases studied adsorb on the interstitial channels in the SWNT bundles.  相似文献   

12.
The motion and equilibrium distribution of water molecules adsorbed inside neutral and negatively charged singlewalled carbon nanotubes (SWNTs) have been studied using molecular dynamics simulations (MDSs) at room temperature based on CHARMM (Chemistry at HARvard Molecular Mechanics) potential parameters. We find that water molecules have a conspicuous electropism phenomenon and regular tubule patterns inside and outside the charged tube wall. The analyses of the motion behaviour of water molecules in the radial and axial directions show that by charging the SWNT, the adsorption efficiency is greatly enhanced, and the electric field produced by the charged SWNTs prevents water molecules from flowing out of the nanotube. However, water molecules can travel through the neutral SWNT in a fluctuating manner. This indicates that by electrically charging and uncharging the SWNTs, one can control the adsorption and transport behaviour of polar molecules in SWNTs for using as a stable storage medium or long transport channels. The transport velocity can be tailored by changing the charge on the SWNTs, which may have a further application as modulatable transport channels.  相似文献   

13.
Field emission of electrons from multiwall carbon nanotubes has been investigated by field emission microscopy (FEM) in ultra-high vacuum. A carbon nanotube, at the end of which at least six pentagons exist to make a closed cap, gives an FEM pattern consisting of bright pentagonal rings if the nanotube surface is clean. Adsorption of residual gas molecules is observed as bright spots in the FEM pattern, giving rise to an abrupt increase in the emission current. Adsorbed molecules seem to reside preferentially on the pentagonal sites where the strong electric field is concentrated. A heat cleaning of the emitter at about 1300 K allows the molecules to desorb, and the nanotube emitter recovers its original clean surface. It has been revealed that the adsorption and desorption of gas molecules are responsible for stepwise fluctuation of the emission current.  相似文献   

14.
We studied Li-intercalated carbon nanotube ropes by first-principles methods. Results show charge transfer between Li and C and small structural deformation due to intercalation. Both the interior of the nanotube and the interstitial space are susceptible for intercalation. The Li intercalation potential of a single-walled nanotube rope is comparable to that of graphite and almost independent of the Li density up to around LiC2, as observed in recent experiments. This density is significantly higher than that of Li-intercalated graphite, making the nanorope a promising candidate for the anode material in battery applications.  相似文献   

15.
Vapor-phase intercalation of a single-walled carbon nanotube sample with Cs was carried out and monitored in situ by Raman spectroscopy. Results indicate that the endpoint of the intercalation was limited by small interstitial gaps in the nanotube bundles. These small-diameter gaps are present because of the significant number of small-diameter nanotubes (0.9-1.0 nm, as calculated from Raman radial breathing mode frequencies) present in the sample. It is not possible to determine from our Raman spectra whether the early endpoint is the result of diffusion limitation or the equilibrium energetics at the endpoint, although some diffusion limitation is observed near the beginning of the reaction. A simple geometric model for expansion of the nanotube bundles under intercalation is presented; this model reproduces, reasonably well, measured expansions reported by others and explains both diffusion- and equilibrium-limited mechanisms in terms of the larger lattice expansion required for smaller-diameter nanotubes. Staging of the intercalation process, in analogy with the staged intercalation of graphite intercalation compounds, is not observed. Instead, the transverse mode peaks undergo a gradual decrease in intensity and a gradual charge transfer- and electronic coupling-induced downshift.  相似文献   

16.
Very high reductions in the friction coefficient are reported for natural diamond sliding upon natural diamond when water is introduced at the interface of contact. This reduction is found to depend on the pH value of the water, the load and the sliding velocity. The results are interpreted in terms of the reduction of adhesion due to adsorption of the liquid on the surface, and of graphitisation occurring during sliding, with graphite acting as a lubricant. Received 15 September 1999  相似文献   

17.
Shi  Yanan  Sun  Fengying  Wang  Dan  Zhang  Renyu  Dou  Changlin  Liu  Wanhui  Sun  Kaoxiang  Li  Youxin 《Journal of nanoparticle research》2013,15(10):1-10
The electron transport properties of CO adsorbed SiC nanotubes as a function of concentration density and structural deformation have been characterized for the single-walled (7,0) zigzag model using a combined formalism of density-functional theory and nonequilibrium Green’s function. It is found that CO adsorption can significantly suppress the transmission spectrum of SiC nanotube for a wide range of energies. As the concentration increases, a density-dependent superimposed transport gap exists and widens the initial electronic band gap of SiC nanotube. Under the same applied bias voltage, the current through SiC nanotube decreases with the increasing CO concentrations. The local torsional deformation has no effect on this essential motif. However, the current in the locally twisted system is larger than that of the undeformed one. The transmission suppression and the current differences can be attributed to the response of the localized impurity state induced by CO adsorption to density and deformation. Our results show that SiC nanotube can be a promising gas sensor for CO detection.  相似文献   

18.
The vibration spectrum of perfect carbon nanotubes is studied using a two-parametric potential which includes pairwise and three-particle interatomic interactions. This potential was proposed by Keating and allows one to take into account the elasticity of pairwise interatomic bonds and the elasticity associated with a change in the angle between directional interatomic bonds in covalent crystals. Using the Keating potential, the vibration spectrum of a graphite monolayer is calculated and fitted to the vibration spectrum of crystalline graphite, thereby determining the parameters of the potential. With these parameters, the phonon spectra of perfect monolayer graphite nanotubes are calculated. A continuum model, in which a monolayer nanotube is represented as an elastic cylindrical shell of a finite thickness, is also discussed. Within this model, the vibration spectrum of a nanotube is calculated numerically in the long-wavelength limit as a function of the radius and thickness of the nanotube.  相似文献   

19.
《Physics letters. A》2001,289(3):121-126
The formation of nanotube has been studied by tight binding molecular dynamics (TBMD) simulation technique. We found, in agreement with previous experimental and theoretical work, two layers of graphite flake can be curled up to form different nanotubes, whose helicity depend on the initial structure of graphite flake. Temperature is one of the critical factors responsible for the formation and closure of nanotube.  相似文献   

20.
The dynamics of solitary plane waves in graphite layers and supersonic acoustic solitons in an ideal single-layer carbon nanotube are numerically studied. It is shown that stable solitary waves exist only in flat graphite layers. In nanotubes, only soliton-like excitations can exist and their supersonic motion is always accompanied by phonon emission. The lifetime of such excitations depends on their energy and on the nanotube radius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号