首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical ex- pression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.  相似文献   

2.
An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass transfer are presented.A uniform magnetic field is assumed to be applied transversely to the direction of the flow with the consideration of the induced magnetic field with viscous and magnetic dissipations of energy.The porous plate is subjected to a constant suction velocity as well as a uniform mixed stream velocity.The governing equations are solved by the perturbation technique and a numerical method.The analytical expressions for the velocity field,the temperature field,the induced magnetic field,the skin-friction,and the rate of heat transfer at the plate are obtained.The numerical results are demonstrated graphically for various values of the parameters involved in the problem.The effects of the Hartmann number,the chemical reaction parameter,the magnetic Prandtl number,and the other parameters involved in the velocity field,the temperature field,the concentration field,and the induced magnetic field from the plate to the fluid are discussed.An increase in the heat source/sink or the Eckert number is found to strongly enhance the fluid velocity values.The induced magnetic field along the x-direction increases with the increase in the Hartmann number,the magnetic Prandtl number,the heat source/sink,and the viscous dissipation.It is found that the flow velocity,the fluid temperature,and the induced magnetic field decrease with the increase in the destructive chemical reaction.Applications of the study arise in the thermal plasma reactor modelling,the electromagnetic induction,the magnetohydrodynamic transport phenomena in chromatographic systems,and the magnetic field control of materials processing.  相似文献   

3.
A mathematic model is developed to describe heat and mass transfer with phase change in the porous wick of evaporator of capillary pumped loop (CPL). This model with six field variables, including temperature, liquid content, pressure, liquid velocity, vapor velocity and phase-change rate, is closed mathematically with additional pressure relationships introduced. The present model is suitable to the numerical computation, as the established equations become comparatively easy to solve, which is applied to CPL evaporator. The numerical results are obtained and the parameter effects on evaporator are discussed. The study demonstrates that instead of an evaporative interface, there exists an unsaturated two-phase zone between the vapor-saturated zone and the liquid-saturated zone in the wick of CPL evaporator.  相似文献   

4.
Convection heat and mass transfer from a disk   总被引:4,自引:0,他引:4  
The aim of the present study is to investigate the coupling influence of the disk rotating speed and air velocity from laboratory room on the local heat and mass characteristics from a disk in wind tunnel with the naphthalene sublimation technique. The experiments are performed at four different free stream flow velocities. From the experimental results, the correlation of Sherwood number with the coupling Reynolds number and of Nusselt number with the coupling Reynolds number are both proposed in the present work.  相似文献   

5.
A boundary layer analysis is presented to investigate numerically the effects of radiation,thermophoresis and the dimensionless heat generation or absorption on hydromagnetic flow with heat and mass transfer over a flat surface in a porous medium.The boundary layer equations are transformed to non-linear ordinary differential equations using scaling group of transformations and they are solved numerically by using the fourth order Runge-Kutta method with shooting technique for some values of physical parameters.Comparisons with previously published work are performed and the results are found to be in very good agreement.Many results are obtained and a representative set is displayed graphically to illustrate the influence of the various parameters on the dimensionless velocity,temperature and concentration profiles as well as the local skin-friction coefficient,wall heat transfer,particle deposition rate and wall thermophoretic deposition velocity.The results show that the magnetic field induces acceleration of the flow,rather than deceleration(as in classical magnetohydrodynamics(MHD) boundary layer flow) but to reduce temperature and increase concentration of particles in boundary layer.Also,there is a strong dependency of the concentration in the boundary layer on both the Schmidt number and mass transfer parameter.  相似文献   

6.
In the present paper, the boundary layer flow of viscous incompressible fluid over a stretching plate has been considered to solve heat flow problem with variable thermal conductivity. First, using similarity transformation, the components of velocity have been obtained. Then, the heat flow problem has been considered in two ways: (i) prescribed surface temperature (PST), and (ii) prescribed stretching plate heat flux (PHF) in case of variable thermal conductivity. Due to variable thermal conductivity, temperature profile has its two part—one mean temperature and other temperature profile induced due to variable thermal conductivity. The related results have been discussed with the help of graphs.  相似文献   

7.
In this work, the problem of transient heat and mass transfer and long-term stability of a SGSP has been numerically investigated using a 2D-transient-variable properties model and a finite-control-volume numerical method. The pond, which was assumed initially stabilized with linear temperature and salinity profiles, has been subject to real weather conditions. The numerical model has been satisfactorily validated against measured temperature data. Numerical results have clearly shown that the solar heating effect appears considerably more pronounced during the hot seasons (spring and summer) than during the cold ones (winter and autumn). The existence of two critical zones, one beneath the water surface and the other one located near the pond bottom, has clearly been established at a very early time of operation. It has been found that such critical zones have progressively become more vulnerable in time. Also, the solar heating effect, the heat losses through the free surface as well as the water transparency have an important influence on the pond stability characteristics and its temporal evolution. The presence of a heat extraction with its cooling effect tends to stabilize the pond. Such a beneficial effect, which is mainly observed in the bottom region of the pond, has been found to be more pronounced during the summer than during the winter time. Results have also shown that the pond with good transparency water would likely be more susceptible to develop instabilities than the one with poorer transparency water. Such an effect appears to be more important inside the lower critical zone.  相似文献   

8.
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency. The project supported by the National Natural Science Foundation of China (19889209) and Russian Foundation for Basic Research (97-02-16943)  相似文献   

9.
The transient problem of coupled heat and mass transfer of a micropolar fluid in magneto‐hydrodynamic free convection from a vertical infinite porous plate with an exponentially decaying heat generating considering the viscous dissipation and ohmic heating effects is studied. Joule heating must be considered when the viscous dissipation and the Prandtl number are large. The non‐dimensional equations for the conservation of mass, momentum, energy and concentration are solved by means a numerical technique based on electric analogy (network simulation method). This method provides the numerical response of the system by running the network in circuit resolution software with the solution to both transient and steady‐state problems at the same time, and its programming does not require manipulation of the sophisticated mathematical software that is inherent in other numerical methods. The effects of the material parameters, viscous dissipation, internal generation and Joule heating on velocity, angular momentum and temperature fields across the boundary layer are investigated. In addition, the skin‐friction coefficient, couple stress coefficient, Nusselt number and Sherwood number are shown in tabular form. The numerical results for velocity and temperature distributions of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
An analysis is presented to investigate the effects of chemical reaction, thermal radiation and heat generation or absorption on unsteady free convective heat and mass transfer along an infinite vertical porous plate in the presence of a transverse magnetic field and Hall current. The governing partial differential equations are formulated and transformed by using a similarity transformation into a system of ordinary differential equations. The resulting equations are solved numerically using a fourth‐order Runge–Kutta scheme along with the shooting method. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. Numerical results for the velocity, temperature and concentration distributions are shown graphically for different parametric values. The effects of parameters on the local friction coefficients, the Nusselt number and Sherwood numbers are depicted in tabulated form. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
We investigate the problem of the unsteady mixed convection peristaltic mechanism. The flow includes a temperature-dependent viscosity with thermal diffusion and diffusion-thermo effects. The peristaltic flow is between two vertical walls, one of which is deformed in the shape of traveling transversal waves exactly like peristaltic pumping and the other of which is a parallel flat plate wall. The equations of momentum, energy, and concentration are subject to a set of appropriate boundary conditions by assuming that the solution consists of two parts: a mean part and a perturbed part. The solution of the perturbed part has been obtained by using the long-wave approximation. The mean part has been solved and coincides with the approximation of Ostrach. The mean part (zeroth order), the first order, and the total solution of the problem have been evaluated numerically for several sets of values of the parameters entering the problem. The skin friction, and the rate of heat and mass transfer at the walls are obtained and illustrated graphically.  相似文献   

12.
Direct numerical simulations of heat transfer in a fully-developed turbulent pipe flow with circumferentially-varying thermal boundary conditions are reported. Three cases have been considered for friction Reynolds number in the range 180–360 and Prandtl number in the range 0.7–4. The temperature statistics under these heating conditions are characterized. Eddy diffusivities and turbulent Prandtl numbers for radial and circumferential directions are evaluated and compared to the values predicted by simple models. It is found that the usual assumptions made in these models provide reasonable predictions far from the wall and that corrections to the models are needed near the wall.  相似文献   

13.
The diffusion‐thermo and thermal‐diffusion effects on heat and mass transfer by mixed convection boundary layer flow over a vertical isothermal permeable surface embedded in a porous medium were studied numerically in the presence of chemical reaction with temperature‐dependent viscosity. The governing nonlinear partial differential equations are transformed into a set of coupled ordinary differential equations, which are solved numerically by using Runge–Kutta method with shooting technique. Numerical results are obtained for the velocity, temperature and concentration distributions, and the local skin friction coefficient, local Nusselt number and local Sherwood number for several values of the parameters, namely, the variable viscosity parameter, suction/injection parameter, Darcy number, chemical reaction parameter, and Dufour and Soret numbers. The obtained results are presented graphically and in tabulated form, and the physical aspects of the problem are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
An analysis has been carried out to obtain the flow, heat and mass transfer characteristics of a viscous electrically conducting fluid having temperature dependent viscosity and thermal conductivity past a continuously stretching surface, taking into account the effect of Ohmic heating. The flow is subjected to a uniform transverse magnetic field normal to the plate. The resulting governing three-dimensional equations are transformed using suitable three-dimensional transformations and then solved numerically by using fifth order Runge–Kutta–Fehlberg scheme with a modified version of the Newton–Raphson shooting method. Favorable comparisons with previously published work are obtained. The effects of the various parameters such as magnetic parameter M, the viscosity/temperature parameter θ r , the thermal conductivity parameter S and the Eckert number Ec on the velocity, temperature, and concentration profiles, as well as the local skin-friction coefficient, local Nusselt number, and the local Sherwood number are presented graphically and in tabulated form.  相似文献   

15.
This paper studies mixed convection, double dispersion and chemical reaction effects on heat and mass transfer in a non-Darcy non-Newtonian fluid over a vertical surface in a porous medium under the constant temperature and concentration. The governing boundary layer equations, namely, momentum, energy and concentration, are converted to ordinary differential equations by introducing similarity variables and then are solved numerically by means of fourth-order Runge-Kutta method coupled with double-shooting technique. The velocity, temperature concentration, heat and mass transfer profiles are presented graphically for various values of the parameters, and the influence of viscosity index n, thermal and solute dispersion, chemical reaction parameter χ are observed.  相似文献   

16.
We solve by a finite difference method a system of simultaneous non-linear partial differential equations which modelizes the transfer of heat and mass when a fluid evaporates from the hot wall and condenses on the cold wall of an upright rectangular cavity. The need to verify a certain condition associating the physical parameters of the fluid for the existence of steady state solutions is proved.  相似文献   

17.
Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering.CFD simulation was carried out to investigate and analyze the local flow and heat transfer in a 120-sphere random packed bed.3D Navier-Stokes equation was solved with a finite volume formulation based on the Chimera meshing technique.Investigation was focused on low Reynolds number flow(Re=4.6-56.2),which typically occurs in packed bed reactors in bio-chemical fields.Detailed temperature field information was obtained.Inhomogeneity of flow and heat transfer due to the non-uniform distribution of void fraction was discussed and analyzed.  相似文献   

18.
The motion and heat and mass transfer of particles of a disperse admixture in nonisothermal jets of a gas and a low-temperature plasma are simulated with allowance for the migration mechanism of particle motion actuated by the turbophoresis force and the influence of turbulent fluctuations of the jet flow velocity on heat and mass transfer of the particle. The temperature distribution inside the particle at each time step is found by solving the equation of unsteady heat conduction. The laws of scattering of the admixture and the laws of melting and evaporation of an individual particle are studied, depending on the injection velocity and on the method of particle insertion into the jet flow. The calculated results are compared with data obtained with ignored influence of turbulent fluctuations on the motion and heat and mass transfer of the disperse phase. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 95–108, May–June, 2008.  相似文献   

19.
In this paper, the steady flow and heat transfer of a magnetohydrodynamic fluid is studied. The fluid is assumed to be electrically conducting in the presence of a uniform magnetic field and occupies the porous space in annular pipe. The governing nonlinear equations are modeled by introducing the modified Darcy's law obeying the Sisko model. The system is solved using the homotopy analysis method (HAM), which yields analytical solutions in the form of a rapidly convergent infinite series. Also, HAM is used to obtain analytical solutions of the problem for noninteger values of the power index. The resulting problem for velocity field is then numerically solved using an iterative method to show the accuracy of the analytic solutions. The obtained solutions for the velocity and temperature fields are graphically sketched and the salient features of these solutions are discussed for various values of the power index parameter. We also present a comparison between Sisko and Newtonian fluids. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A model problem of the motion of water and air in thawing snow is examined using the Masket-Leverett equations of two-phase filtration. The theorem of existence of a self-similar solution is proved. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 4, pp. 13–23, July–August, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号