首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Halo alcohol dehalogenase HheC catalyzes the highly enantioselective dehalogenation of vicinal halo alcohols to epoxides, as well as the reverse reaction, the enantioselective and beta-regioselective nucleophilic ring opening of epoxides by pseudo-halides such as azide and cyanide. To investigate this latter reaction, we determined X-ray structures of complexes of HheC with the favored and unfavored enantiomers of para-nitrostyrene oxide. The aromatic parts of the two enantiomers bind in a very similar way, but the epoxide ring of the unfavored (S)-enantiomer binds in a nonproductive inverted manner, with the epoxide oxygen and Cbeta atom positions interchanged with respect to those of the favored (R)-enantiomer. The calculated difference in relative Gibbs binding energy is in agreement with the observed loss of a single hydrogen bond in the S bound state with respect to the R bound state. Our results indicate that it is the nonproductive binding of the unfavored (S)-enantiomer, rather than the difference in affinity for the two enantiomers, that allows HheC to catalyze the azide-mediated ring opening of para-nitrostyrene oxide with high enantioselectivity. This work represents a rare opportunity to explain the enantioselectivity of an enzymatic reaction by comparison of crystallographic data on the binding of both the favored and unfavored enantiomers.  相似文献   

2.
Eight l-tartrates and a d-tartrate with different alcohol moieties were used as chiral oils to prepare chiral microemulsions, which were utilized in conjunction with borate buffer to separate the enantiomers of β-blockers or structurally related compounds by the chiral microemulsion electrokinetic chromatography (MEEKC) method. Among them, six were found to have a relatively good chiral separation performance and their chiral recognition effect in terms of both enantioselectivity and resolution increases linearly with the number of carbon atoms in the alkyl group of alcohol moiety. The tartrates containing alkyl groups of different structures but the same number of carbon atoms, i.e. one of straight chain and one of branched chain, provide similar enantioseparations. The trend was elucidated according to the changes in the difference of the steric matching between the molecules of two enantiomers and chiral selector. Furthermore, it was demonstrated for the first time that a water insoluble solid compound, di-i-butyl l-tartrate (mp. 73.5 °C), can be used as an oil to prepare a stable microemulsion to be used in the chiral MEEKC successfully. And a critical effect of the microemulsion for chiral separation, which has never been reported before, was found in this experiment, namely providing a hydrophobic environment to strengthen the interactions between the chiral selector and enantiomers.  相似文献   

3.
Enantiomeric separation of six β-adrenergic blockers was systematically studied for the first time on a polysaccharide-based chiral stationary phase, i.e. Chiralpak IB, under the normal-phase mode. The effect of alcohol modifiers, alcohol content and basic additive on enantiomeric separation was evaluated and optimized. Under the optimal conditions, the enantiomers of atenolol, bevantolol, cartelol, esmolol, metoprolol and propranolol were all baseline resolved with resolutions of 1.50, 8.56, 2.05, 2.11, 3.56 and 4.02, respectively. Additionally, molecular docking was tested to explain chiral recognition mechanisms of this set of the drug enantiomers on Chiralpak IB. The details of the various interactions affecting enantiomeric separation were confirmed from the molecular level and the modeling data were in agreement with the chromatographic results concerning the enantioselectivity.  相似文献   

4.
The influence of the physical properties of base silica materials and spacer length on chiral separation of enantiomers on ovomucoid (OVM)-bonded materials was investigated. With regard to the pore size of the base silica materials, the 300-Å materials gave higher enantioselectivity, than the 120-Å materials, despite the smaller amounts of bonded OVM proteins. However, higher resolution was obtained with the latter materials. With regard to the spacer length, aminopropyl (AP)-, aminobutyl-, N-(4-aminobutyl)-3-aminopropyl- and N-(6-aminohexyl)-3-aminopropyl-silica gels were activated by N,N′-di-succinimidyl carbonate (DSC) and the proteins were bound. The first two materials showed excellent chiral resolution properties for the solutes tested, and the AP materials gave higher enantioselectivity and resolution. On the other hand, only oxprenolol enantiomers were slightly resolved on the last two materials. Also, AP-silica gels activated by DSC were compared with glycerylpropyl (GP)-silica gels activated by 1,1′-carbonyldiimidazole. The former materials gave higher resolution for acidic and basic solutes despite the lower enantioselectivity, whereas for the unchanged hexobarbital the latter materials gave higher enantioselectivity and almost equal resolution. The above results reveal that the 120-Å base silica gels are more suitable than the 300- Å base silica gels for obtaining larger amounts of bonded OVM proteins and that a less hydrophobic spacer such as an AP group and a hydrophilic spacer such as a GP group are suitable.  相似文献   

5.
The current rule to predict the enantiopreference of subtilisin toward secondary alcohols is based on the size of the substituents at the stereocenter and implies that the active site contains two differently sized pockets for these substituents. Several experiments are inconsistent with the current rule. First, the X-ray structures of subtilisin show there is only one pocket (the S1' pocket) approximately the size of a phenyl group to bind secondary alcohols. Second, the rule often predicts the incorrect enantiomer for reactions in water. To resolve these contradictions, we refine the current rule to show that subtilisin binds only one substituent of a secondary alcohol and leaves the other in solvent. To test this refined empirical rule, we show that the enantioselectivity of a series of secondary alcohols in water varied linearly with the difference in hydrophobicity (log P/P0) of the substituents. This hydrophobicity difference accounts for the solvation of one substituent in water.  相似文献   

6.
A family of single-isomer amino-beta-cyclodextrin (amino-beta-CD) derivatives containing an amino or (hydroxy)alkylamino group in one of the primary positions has been synthesized. The steric effect and hydrogen bond forming ability of the different substituents on enantioseparation of acidic enantiomers has been studied by capillary electrophoresis (CE). Three enantiomeric model compounds (mandelic acid, cis-permethrinic acid, and cis-deltamethrinic acid) having significantly different apparent complex stability constants with beta-CD were applied in the experiments. Dependence of separation selectivity, resolution as well as mobility difference on chiral selector concentration (0.1-20 mM, pH 6.0) was investigated. Each amino-beta-CD showed higher enantioselectivity than the native beta-CD. One hydroxyalkyl group attached to the primary amino N-atom significantly increased both the enantioselectivity and the resolution compared to the primary amino-beta-CD, while two hydroxyalkyl moieties decreased them due to the predominance of steric hindrance. The value of the apparent complex stability constants obtained suited well the mobility difference model (by Wren). On the other hand, the optimum selector concentrations calculated according to the model were slightly lower than the experienced concentrations giving the maximum enantioresolution of enantiomers.  相似文献   

7.
Molecular crowding is a new approach to enhance the retention properties and selectivity of molecularly imprinted polymers. In this work, this concept was first applied to chiral CE to enhance its enantioselectivity. A model system, enantioseparation of salbutamol using hydroxypropyl‐beta‐cyclodextrin as chiral selector in the presence of dextran or dextrin as crowding‐inducing agents, was chosen to demonstrate its potency. Some parameters, especially the concentration of crowding‐inducing agents and cyclodextrins were investigated intensively. Moreover, based on fluorescence spectroscopy and affinity CE, it was found that the presence of crowding‐inducing agents could promote the association of enantiomers with cyclodextrins and intensify the interacting differences of two enantiomers with cyclodextrins. As a result, the essential concentration of cyclodextrins to make the enantiomers reach baseline separation was significantly decreased with the aid of molecular crowding. This study shows that molecular crowding is an effective strategy to enhance the enantioselectivity of cyclodextrin in chiral CE.  相似文献   

8.
《Tetrahedron: Asymmetry》2001,12(21):3047-3052
A study of the enantioselectivity exhibited by the lipase B from Candida antarctica in the transesterification of different α-substituted α-propylmethanols with vinyl acetate is shown. The best results are obtained when the large-sized (L) substituent of the alcohol is either a phenyl group or more especially a cyclohexyl group, although the reaction rates are lower than when linear or slightly branched groups are present. It is also found that ramification at the β-position of the L substituent has a deleterious effect on both lipase activity and enantioselectivity. Moreover, some α-substituted benzyl alcohols bearing medium-sized (M) substituents larger than an ethyl and smaller than a propyl group are resolved by means of this methodology with moderate-good enantioselectivities (E=46–57) and similar reaction rates.  相似文献   

9.
Twelve basic analytes, including ephedrine and its structurally related compounds, were used to study the influence of capillary temperature on enantioselectivity in CE enantioseparations under reversed polarity mode using sulfated β‐CD (S‐β‐CD) as chiral selectors. All of the effective mobility changes of (+)‐enantiomers between 35 and 20°C were higher than those of (–)‐enantiomers whosoever enantioselectivity increased or decreased with an increase in temperature. However, the unusual temperature effect that enantioselectivity was increased with an increase of temperature was observed for the compounds with hydroxyl substitution on phenyl ring and had relationship with the molecular structures. With performing NMR studies on the selected selector‐analyte complexes, the results led to a deeper understanding of the chiral discrimination process. Inspection of the complexation‐induced chemical shifts (CICS) of the enantiomers showed that the phenyl ring sits deeply and slantways in the cavity of S‐β‐CD and alkyl chain pointed out of the wider rim of S‐β‐CD with ion–ion and hydrogen bond interactions between analytes and S‐β‐CD.  相似文献   

10.
We have developed a practical epoxidation of electron-deficient enones in aqueous media using cyclic dipeptides as bioinspired green catalyst. Optimizing the reaction conditions in a triphasic system led to efficient conditions providing epoxides with good enantioselectivities. Depending on the catalyst substituent chirality, both enantiomers are obtained. The cyclic rigidity impacts significantly the enantioselectivity.  相似文献   

11.
《Tetrahedron: Asymmetry》2014,25(23):1505-1512
The lipase-catalyzed asymmetric acetylation of secondary alcohols containing a carborane (boron cluster) moiety was investigated. Most lipases examined showed poor catalytic activity toward carborane-containing secondary alcohol 1a, but lipase TL efficiently catalyzed the acetylation of 1a with high enantioselectivity, to afford (R)-3a. This selectivity is similar to that of the general lipase-catalyzed acylation of secondary alcohols. Utilizing lipase TL, we succeeded in the resolution of carborane-containing alcohol 5, synthesized as a progesterone receptor ligand candidate, and evaluated the activities of the two enantiomers.  相似文献   

12.
Thermodynamic studies were performed on 12 pairs of N-trifluoroacetyl-O-alkyl nipecotic acid ester enantiomers on diluted permethylated beta-cyclodextrin stationary phase (CP Chirasil-Dex CB). The influence of ester alkyl group structure on interaction with permethylated beta-cyclodextrin (Me-CD) and enantioselectivity was studied. The types of alkyl groups studied included n-alkyl (C1-C5) and groups containing branching at differing locations relative to the chiral center of the molecule. The results show that for a given molecular weight, the n-alkyl esters have stronger interactions with Me-CD than esters containing branched alkyl groups. However, although having weaker interactions with Me-CD, esters containing alpha-branched alkyl groups exhibit higher enantioselectivity than the corresponding n-alkyl or beta-branched isobutyl esters. From the retention data, thermodynamic parameters were estimated using the retention increment method and enthalpy-entropy compensation plots (ln R' versus deltaH) were constructed. The results suggest that ester enantiomers with branching at the alpha-carbon of the ester alkyl group have additional and/or different types of enantioselective interactions with Me-CD than the C1-C5 n-alkyl esters or beta-branched isobutyl ester. In order to obtain a qualitative sense of the interaction with Me-CD, structures of the diastereomeric complexes formed between Me-CD and some of the ester enantiomers were modeled using simulated annealing molecular dynamics.  相似文献   

13.
设计、 合成了一系列不对称席夫碱配体, 得到了相应的金属铝配合物. 研究了配合物在外消旋丙交酯的开环聚合反应中的催化性能. 结果表明, 系列配合物对外消旋丙交酯(rac-LA)的聚合催化活性明显提高, 并具有立体选择性.  相似文献   

14.
Summary Molecular dynamics simulation and free energy perturbation techniques have been used to study the relative binding free energies of 8-methylpterins and 8-methyl-N5-deazapterins to dihydrofolate reductase (DHFR). Methyl-substitution at the 5, 6 and 7 positions in the N-heterocyclic ring gives rise to a variety of ring substituent patterns and biological activity: several of these methyl derivatives of the 8-methyl parent compounds (8-methylpterin and 8-methyl-N5-deazapterin) have been identified as substrates or inhibitors of vertebrate DHFR in previous work. The calculated free energy differences reveal that the methyl-substituted compounds are thermodynamically more stable than the primary compounds (8-methylpterin and 8-methyl-N5-deazapterin) when bound to the enzyme, due largely to hydrophobic hydration phenomena. Methyl substitution at the 5 and/or 7 positions in the 6-methyl-substituted compounds has only a small effect on the stability of ligand binding. Furthermore, repulsive interactions between the 6-methyl substituent and DHFR are minimal, suggesting that the 6-methyl position is optimal for binding. The results also show that similarly substituted 8-methylpterins and 8-methyl-N5-deazapterins have very similar affinities for binding to DHFR. The computer simulation predictions are in broad agreement with experimental data obtained from kinetic studies, i.e. 6,8-dimethylpterin is a more efficient substrate than 8-methylpterin and 6,8-dimethyl-N5-deazapterin is a better inhibitor than 8-methyl-N5-deazapterin.  相似文献   

15.
The major goal of this study was to determine the affinity pattern of the terbutaline (TB) enantiomers toward α-, β-, γ-, and heptakis(2,3-di-O-acetyl)-β-cyclodextrins and using NMR spectroscopy for the understanding of the fine mechanisms of interaction between the cyclodextrins (CD) and TB enantiomers. It was shown once again that CE in combination with NMR spectroscopy represents a sensitive tool to study the affinity patterns and structure of CD complexes with chiral guests. Opposite affinity patterns of TB enantiomers toward native α- and β-CDs were associated with significant differences between the structure of the related complexes in solution. In particular, the complex between TB enantiomers and α-CD was of the external type, whereas an inclusion complex was formed between TB enantiomers and β-CD. One of the possible structures of the complex between TB and heptakis(2,3-di-O-acetyl)-β-CD (HDA-β-CD) was quite similar to that of TB and β-CD, although the chiral recognition pattern and enantioselectivity of TB complexation with these two CDs were very different.  相似文献   

16.
The mechanisms of structure selective and enantioselective retentions of amines and acids on two chiral stationary phases based on wild type cellobiohydrolase I (CBH I) and its mutant D214N have been investigated. All the amino alcohols tested had an enantioselective site that overlaps with the catalytically active site of CBH I, whereas the enantioselectivity of prilocaine was not affected by the mutation. The hydroxyl group of the amino alcohols did not seem to be an important contributor to the total binding strength whereas a bromo substituent in the aromatic ring promotes a high enantioselectivity (alpha=7.05). Interestingly, the chiral recognition site of the acid warfarin overlaps with the binding site of the amino alcohols. Di-p-toluoyltartaric acid and dibenzoyltartaric acid were strongly retained probably due to electrostatic attraction, but no enantioselectivity was observed. The difference in retention characteristics for the amino alcohols on the two stationary phases was strongly pH-dependent. A change in elution order of different amino alcohols occurred when changing the pH from 5.0 to 7.0. The difference between the two phases was lower at low pH. The retention times could also be affected by ionic strength and by use of cellobiose as a mobile phase additive but no indication of ion-pair retention of the amines was observed, when adding hexanesulphonate as counter ion to the mobile phase. The temperature dependence of the retention of the enantiomers of propranolol at pH 7.0 on the mutant D214N was similar to what was earlier observed on the wild type CBH I at lower pH.  相似文献   

17.
This work documents the influence of the position of single carboxymethyl group on the β‐cyclodextrin skeleton on the enantioselectivity. These synthesized monosubstituted carboxymethyl cyclodextrin (CD) derivatives, native β‐cyclodextrin, and commercially available carboxymethyl‐β‐cyclodextrin with degree of substitution approximately 3 were used as additives into the BGE consisting of phosphate buffer at 20 mmol/L concentration, pH 2.5, and several biologically significant low‐molecular‐mass chiral compounds were enantioseparated by CE. The results indicate that different substituent location on β‐cyclodextrin skeleton has a significant influence on the enantioseparation of the investigated enantiomers. The enantioselectivity of 2IO‐regioisomer was better than with native β‐cyclodextrin. Comparable results to native β‐cyclodextrin were obtained for 6IO‐ regioisomer and the enantioselectivity of 3IO‐regioisomer was even worse than with native β‐cyclodextrin. Commercially available derivative of CD provides better resolutions than the monosubstituted carboxymethyl CD derivatives for most of the investigated analytes.  相似文献   

18.
合成了苯基氨基甲酸酯衍生化的β-环糊精键合固定相,9个α-氨基膦酸酯类化合物首次在环糊精类固定相上进行了有效拆分,研究了温度和流速对异构体选择性的影响,讨论了可能的手性识别机理.  相似文献   

19.
The structure, stability, and reactivity of proton-bound diastereomeric [M x H x A]+ complexes between some amino acid derivatives (A) and several chiral tetra-amide macrocycles (M) have been investigated in the gas phase by ESI-FT-ICR and ESI-ITMS-CID mass spectrometry. The displacement of the A guest from the diastereomeric [M x H x A]+ complexes by reaction with the 2-aminobutane enantiomers (B) exhibits a distinct enantioselectivity with regards to the leaving amino acid A and, to a minor extent, to the amine reactant B. The emerging selectivity picture, discussed in the light of molecular mechanics calculations, provides compelling evidence that the most stable conformers of the selected chiral tetra-amide macrocycles M may acquire in the gas phase a different conformation by induced fit on complexation with some representative amino acid derivatives A. This leads to the coexistence in the gas phase of stable diastereomeric [M x H x A]+ eq-eq and ax-ax structures, in proportions depending on the configuration of A and M and characterized by different stability and reactivity toward the 2-aminobutane enantiomers. The enantioselectivity of the gas-phase A-to-B displacement in the diastereomeric [M x H x A]+ complexes essentially reflects the free energy gap between the homo- and heterochiral [M x H x A]+ complexes, except when the tetra-amidic host presents an additional macrocycle generated by a decamethylene chain. In this case, the measured enantioselectivity mostly reflects the stability difference between the relevant diastereomeric transition structures.  相似文献   

20.
Various routes were examined for the synthesis of chiral biphenyl species that are substituted at the 2,2', 4,4' and 6,6' positions. Because the biaryl bond is tetrasubstituted, many coupling reactions were not suitable. The most reliable coupling reaction proved to be the Ullmann, which gave the desired product in 82% yield. The products were required as the starting point for the preparation of chiral materials using these as the monomer. For this reason, a route was required that produced large quantities of both enantiomers. The two enantiomers were resolved at the penultimate step by the use of chiral HPLC. A complicating feature proved to be the necessity to have a reactive group at the 4,4' positions, which would permit polymerization though this point. Ultimately, we employed an Ullmann coupling on a dibrominated arene, which occurred selectively at the more hindered bromine by virtue of the directing effect of an ortho ester substituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号