首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The density functional formalism of Hohenberg and Kohn is used to investigate the energies, charge densities and forces which hold an adatom on the surface of a simple metal. The valence wavefunction of the adatom is fitted to the Herman-Skillman solutions at large distance and is simplified somewhat in the core region. The field of the ion is represented by the Ashcroft pseudopotential. For the metal the jellium model is used. Detailed calculations are carried out for a sodium adatom on a sodium surface. Simply juxtaposing adatom and surface gives a binding energy of about 13eV. This value is approximately twice the surface energy per atom in the close-packed plane. Charge redistributions as determined variationally increase the binding energy by about 10%. The redistribution is primarily a dipole induced on the adatom at close distances, but at somewhat larger distances a prolate quadrupole also appears on the atom. A small amount of charge is also drawn from the metal toward the atom. The equilibrium distance for the adatom turns out to be 1.66 Å from the surface, as compared with 1.52 Å, the observed value for one-half the distance between the close-packed planes. Contour plots of the piling-up of electronic charge between the adatom and the metal are presented.  相似文献   

2.
A novel method is presented to study migration of adsorbed metal atoms on a clean (hkl) surface of a metal substrate. The system used was Ni on Ni(100). We make use of the assumption that each single step of random walk motion of an individual adatom on the metal substrate refers to an activation energy ΔEif (indices i and f giving the number of occupied nearest neighbour sites in the initial and final position respectively). Furthermore, we assume that the dipole moment pv of an adatom is determined by the number v of occupied nearest neighbour sites. Via their dipole moments the adsorbed atoms induce a change of work function ΔΦ of the substrate metal, ΔΦ being related to the average dipole moment per unit area by the Helmholtz equation. To measure ΔΦ we use a pendulum device. At fixed low coverage θ the variation of ΔΦ with temperature T has been calculated numerically within the framework of a Monte Carlo simulation (MCS) model, using various activation energies ΔEif and dipole moments pv as input parameters. By fitting these data to the experimental curves we could derive the following dipole moments and activation energies: p0 = 0.45 ± 0.05 D, p1 = 0.36 ± 0.05 D, p2 = 0.27 ± 0.05 D, p3 = 0.18 ± 0.05 D, ΔE00 0.60 ± 0.02 eV, ΔE10 = 0.70 ± 0.025 eV, ΔE21 = 0.80 ± 0.05 eV, ΔE20 = 0.90 ± 0.05 eV. We compare these results with those of other workers.  相似文献   

3.
The effect of chemisorption of a single atom on the (001) surface of a bcc metal is investigated via the Green's function and the phase shift techniques using the LCAO method and the tight-binding approximation. In particular, we obtain the change in the electronic density of states Δn due to two different binding sites, the on-site and the centered four-fold-site. For each site, the adatom energy level Ea is placed both inside and outside the band, and several adatom-substrate interaction strengths σ are considered. By varying these parameters we obtain a qualitative understanding of the effects on Δn due to either the adsorption of different atoms or a readjustment of Ea arising from a flow of charge onto or away from the adsorbed atom. We compare our results to previous studies of chemisorption on the (001) surface of an s-band simple cubic crystal and find that, although some details distinctive of the bcc metal arise, the overall qualitative features are the same.  相似文献   

4.
颜超  段军红  何兴道 《物理学报》2010,59(12):8807-8813
采用嵌入原子方法的原子间相互作用势,利用分子动力学方法模拟了六种贵金属原子(Ni,Pd,Pt,Cu,Ag,Au)分别在Pt(111)表面低能沉积的动力学过程.结果表明:随着入射能量从0.1eV升高到200eV,基体表面原子是按层迁移的,沉积过程对基体表面的影响和沉积原子在基体表层的作用均存在两个转变能量(ET1≈5eV,ET2≈70eV).当入射能量低于5eV时,基体表面几乎没有吸附原子和空位形成,沉积原子在基体表层几乎没有注入产生;当入射能量在5—70eV范围内时,沉积原子在基体表层有注入产生,其注入深度小于两个原子层,即为亚注入,此时吸附原子主要由基体表层原子形成,基体表面第三层以下没有空位形成;当入射能量高于70eV时,沉积原子的注入深度大于两个原子层,将会导致表面以下第三层形成空位,并且空位产额随入射能量的升高而急剧增加.基于分子动力学模拟的结果,对低能沉积作用下的薄膜生长以及最优沉积参数的选择进行了讨论.  相似文献   

5.
The chemical bond between atoms in metal oxides is expressed in an energy scale. Total energy is partitioned into the atomic energy densities of constituent elements in the metal oxide, using energy density analysis. The atomization energies, ΔEM for metal atom and ΔEO for O atom, are then evaluated by subtracting the atomic energy densities from the energy of the isolated neutral atom, M and O, respectively. In this study, a ΔEO vs. ΔEM diagram called atomization energy diagram is first proposed and used for the understanding of the nature of chemical bond in various metal oxides. Both ΔEM and ΔEO values reflect the average structure as well as the local structure. For example their values vary depending on the vertex, edge or face sharing of MO6 octahedron, and also change with the overall density of binary metal oxides. For perovskite-type oxides it is shown that the ΔEO value tends to increase by the phase transition from cubic to tetragonal phase, regardless of the tilting-type or the 〈1 0 0〉 displacement-type transition. The bond formation in spinel-type oxides is also understood with the aid of the atomization energies. The present approach based on the atomization energy concept will provide us a new clue to the design of metal oxides.  相似文献   

6.
Performing atomic scale simulations, we study the effect of the scanning tunneling microscopy tip on atom motion on a metal surface at zero bias voltage. We concentrate on a Co atom and mixed CoCu n (n ? 68) chains on a Cu(111) surface. It is revealed that the atom motion can be tuned by adjusting the tip-substrate distance. The change in the potential landscape induced by the tip is found to depend on the tip height. In the presence of the tip, the Co atom can freely jump from the fcc site to the hcp site or vice versa when putting the tip above the adatom at a certain height. For the mixed CoCu n chains on the Cu(111) surface, the diffusion barrier of the end Co atom from the fcc site to the nearby hcp site increases with the increasing chain length and reaches the limit when the chain length is beyond CoCu7 without the tip. Especially, the short chains can perform a collective motion with the help of the tip. The importance of the relaxation induced by the tip-adatom interaction is demonstrated.  相似文献   

7.
The nature of electron-stimulated desorption of europium atoms Eu0 at low incident electron energies E e (~30 eV) and the specific features of the dependence of the yield of europium atoms Eu0 on their concentration on the surface of oxidized tungsten are discussed. The crucial stage is found to be the primary event of vacancy creation in the inner 5p shell of the europium adatom. As follows from estimates, only the first of the two possible ionization scenarios (intratomic electron transfer to the outer shell of the Eu adatom or ejection of the knocked-out electron into vacuum) results in Eu0 desorption. The concentration threshold of the Eu0 yield is determined.  相似文献   

8.
To elucidate the initial growth of metal on oxide surface, we studied adsorption of small nickel clusters, Nin (n = 1-5), on MgO(0 0 1) surface using first-principles method based on density-functional theory. It was found that the preferential adsorption site for an isolated Ni atom is directly above the surface oxygen atom. A strong covalent bond with partial ionic character is formed between the Ni adatom and the surface oxygen atom. Various structures were considered for the Nin isomers and 3D structures were found to be energetically more stable than 2D structures for clusters of more than two atoms. For the 2D clusters, metal-metal bonds prevail over metal-substrate bonds with increasing Ni coverage. The calculated work function and ionization energy were found to vary with Ni coverage which is attributed to the change of the surface dipole moment upon metal adsorption, while the evolution of Schottky barrier height at the initial growth stage is dominated by the adatom-induced gap states.  相似文献   

9.
A series of copper complexes have been investigated by ESCA. All complexes were salts of the tetraphenylphosphonium ion. The binding energies of all the atoms in the complexes were determined. From the binding energies of the ligand atoms we estimated the effective charges on these atoms. For this purpose we used linear relations of the formEb = kq + EbO which had been established previously within our scheme of C 1s (phenyl) as internal standard. From the data thus obtained, the effective charge on the copper atom was estimated. A linear relation between binding energy and the effective charge on the copper atom was found, i.e.,Eb(Cu) = 1.52qCu + 932.2ESCA spectra were recorded for the complexes bis(1,3-diphenyl-1,3-propanediono) copper (II) and bis(3-phenyl-2,4-pentanediono) copper (II). By a combination of the XPS binding energies and IR intensities of the νCH vibrations of the phenyl groups in the complexes with empirical relations between these entities and the effective charges of the atoms and groups, a fairly complete mapping of the charge distributions of these complexes has been achieved.  相似文献   

10.
The interaction of an oxygen atom with various gold surfaces was examined computationally using density functional theory. The relative binding energies for a range of possible adatom locations on each surface were obtained. The results demonstrated the relative importance of low-coordinated gold atoms to bind oxygen for a particular surface and a preference for three-fold adatom coordination over the two-fold and single-coordination sites. Pseudo-potential energy curves were obtained by following the calculated energy as a function of surface position. These general results provide a reference for the interaction of oxygen atoms with gold nanoparticles that may project faces similar to the surfaces studied here.  相似文献   

11.
Progress in field ion microscope studies of adatom displacements on metal surfaces is reviewed. It is concluded that of the displacement processes that contribute to surface diffusion only displacements between low-coordination (terrace) sites are well characterised. Procedures and preliminary results of FIM studies of adatom displacement over steps are described. Activation energies measured for passage of Ta, W, Re, Ir and Pt adatoms across (110) W steps are found to equal activation energies for diffusion over (110) W, despite the highly reflecting character of the step for all the adsorbates except Pt. Displacements of adatoms interacting with other adatoms are discussed. Results presented show that interaction of transition metal adatoms forming close-packed dimers on (110) W is rather weak, with a minimum interaction energy [?U(r) < 4kJ/mol] for Re2 corresponding to a very weak attraction for Re adatoms 0.27 nm apart.  相似文献   

12.
Using molecular dynamics simulations and a modified analytic embedded atom potential, the self-diffusion dynamics of rhenium atomic clusters up to seven atoms on Re(0 0 0 1) surface have been studied in the temperature ranges from 600 K to 1900 K. The simulation time varies from 20 ns to 200 ns according to the cluster sizes and the temperature. The heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center, and diffusion prefactors D0 and activation energies Ea are derived from the Arrhenius relation. It is found that the Arrhenius relation of the adatom can be divided into two parts at different temperature range. The activation energy of clusters increases with the increasing of the atom number in clusters. The prefactor of the heptamer is 2-3 orders of magnitude higher than a usual prefactor because of a large number of nonequivalent diffusion processes. The trimer and heptamer are the nuclei at different temperature range according to the nucleation theory.  相似文献   

13.
The adsorption of H atoms on metal (jellium) surfaces has been investigated using linear response theory within the density functional formalism. The adsorbate is represented initially by a 1S orbital on the H atom, which perturbs the jellium surface and indirectly the adsorbate itself. The interaction energy curves, atomic binding energies, induced dipole moments, chemical shifts associated with the adsorbate, and vibrational excitation energies at the equilibrium internuclear separation have been calculated for a single H atom chemisorbed on metal surfaces. The sum of the atomic binding energy and the ionization potential of the H 1S level may be regarded as the initial state energy in the case of photoemission from the chemisorbed H. The rather satisfactory overall agreement between the theory and the experimental results for binding energies, vibrational excitation energies, and dipole moments suggests that this simple formalism could also have useful applications in more complicated chemisorbed systems.  相似文献   

14.
Jan Paul 《Surface science》1985,160(2):599-617
The present communication presents ultraviolet photoemission spectra (UPS) of three different “alcohols”; water (H2O), methanol (CH3OH), and cyclopentanol (C5H9OH), chemisorbed onto a Cu(111) surface partially covered by sodium atoms as well as onto closely packed sodium films, a free electron adsorbent. Whereas all three alcohols ROH bind reversibly and associatively to Cu(111) they react with adsorbed sodium atoms to metal bound alcoxides RO. The chemisorption bond, characterized by the interaction between O 2pπ orbitals and metal atoms as an electron donor, the alcoxide being the acceptor, is similar for all groups R. The O 2pπ orbitals shift to higher UPS binding energies with increasing electron density, i.e. decreasing rs/ao of the sodium overlayer. Only for HONa, the sterically smallest group R, does the alcoxide growth continue in three dimensions. Although, possibly failing to reproduce the electron density profile of a free electron surface, Hartree-Fock-Slater cluster calculations of small models ROH and RONa3 enable correlations to be made between UPS intensity peaks and one electron orbitals.  相似文献   

15.
Using the Coupled Hartree-Fock (CHF) method, we calculate the energy change, E, in embedding a helium atom into a metallic jellium. This energy change is expressed as a series in the free electron density, ϱ0, of the metal under the assumption that, upon embedding, no changes take place within the helium atom. Keeping the leading term of this series, the well-known result E = αϱ0 is obtained. The constant α is expressed in terms of the characteristics of the 1s orbital of the free helium atom; this is found to be 590 eV a03 which however is greater than the value of 385 eV a03 predicted by the exact Hartree-Fock solution.  相似文献   

16.
Plane boundaries are in general reflective to diffusing atoms. From about 2000 heating periods of direct field ion microscope observations we have studied adatom plane edge interaction and determined the barrier heights of the W {110} plane boundaries in single atom diffusion of W, Re, and Ir. Using equations we have derived recently, the barrier heights ΔEb are found to be about 200 meV for these adatoms.  相似文献   

17.
We report the first-principles Car-Parrinello molecular dynamics study of the behaviour of a single transition metal Ta atom on fullerene C60, at different temperatures, and for both neutral and charged clusters. We seek to characterise the motion of the lone Ta metal atom on the C60 surface, contrasting its behaviour both with that of three Ta atoms, as well as with a single alkali metal atom on the cage surface. Our earlier simulations on C60Ta3 had revealed that the Ta atoms on the surface of the fullerene are affected by a rather high mobility, and that the motion of these atoms is highly correlated due to Ta-atom-Ta-atom attraction. Earlier, experimental studies of a single metal atom (K, Rb) on the surface of a C60 molecule had led to the inference that at room temperature the metal atom skates freely over the surface, the first direct evidence for which was presented by us in earlier first principles molecular dynamical simulations.  相似文献   

18.
In the present work, experimental and computer simulation studies of low-energy (E0 = 80-500 eV) Cs+ ions scattering on Ta, W, Re target surfaces and K+ ions scattering on Ti, V, Cr target surfaces have been performed for more accurate definition of mechanism of scattering, with a purpose of evaluation of an opportunity of use of slow ions scattering as a tool of surface layers analysis. The choice of the targets was based on the fact that the ratios of atomic masses of target atoms and ions μ = m2/m1 were almost the same for all cases considered and greater than 1 (direct mass ratio) however, the difference of binding energies of target atoms in the cases of Cs+ and K+ scattering was almost twice as much. It has been noticed that the dependencies of the relative energy retained by scattering ions at the maximum of energy distribution versus the initial energy Em/E0 (E0) have a similar shape in all cases. The relative energy retained by scattering ions increases while the initial energy of incidence ions decreases. The curves are placed above each other relative to the binding energies of target atoms, to show what this says about the influence of binding energy on a process of scattering of low-energy ions. The correlation between value of energy change maintained by an ion for different values of E0 in the case of scattering by targets with different masses of atoms and its binding energies is experimentally established. The contrary behavior of the Em/E0 (E0) dependencies concerning the target atom binding energy quantity Eb for cases with direct (μ > 1) and inverse (μ < 1) mass ratio of colliding particles is established. The comparison of experimental energy distributions with calculated histograms shows that the binary collision approximation cannot elucidate the abnormally great shift in the maxima of relative energy distributions towards greater energy retained by scattering ions.  相似文献   

19.
Energies for low number Miller index surfaces of β-Sn (b.c.t. structure) were computed and the (1 0 0) plane was found to have the lowest un-relaxed energy of 0.0497 eV/Å2. We then used the Dimer method to find mechanisms and corresponding activation energies, EA, for a Sn adatom moving on a β-Sn (1 0 0) surface. After extensive dimer searches and comparison to long molecular dynamics simulations, we conclude that two simple hopping mechanisms dominate transitions on this surface. For each, we determined hopping rates of the adatom using transition state theory and computed its tracer diffusivity. A hop of the adatom in the lattice c-direction gives D300 K = 1.893 × 10−06 cm2/s (EA = 0.1493 eV), while in the lattice a-direction D300 K = 3.994 × 10−06 cm2/s (EA = 0.1138 eV). When compared to studies on the existence of low energy multi-atom adatom diffusion on Cu and Al (1 0 0), we assert that β-Sn's successive (2 0 0) plane layering in the [1 0 0] direction provides for significantly lower activation energies and may contribute to the inability to locate any concerted atomic motion mechanisms.  相似文献   

20.
A direct experimental study of the diffusion of carbon atoms between the (100)Mo surface and the bulk has been carried out at process temperatures in the range 1400–2000 K, and the total balance of carbon atoms in the system has been determined. The difference in the activation energies of carbon dissolution and precipitation ΔE=E S 1?E 1 S has been found under conditions of a dynamic equilibrium between both processes. This difference determines the temperature dependence of the degree of surface enrichment with carbon in reference to the bulk. The activation energy of the dissolution of carbon atoms has been determined in special experiments (E S 1=3.9 eV), and the activation energy of the precipitation of carbon atoms E 1 S has been calculated (E 1 S =1.9 eV), which turns out to be close to the energy of carbon bulk diffusion in molybdenum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号