首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ion fractions η+ of low energy (5–10 keV) argon particles scattered from a Cu(100) surface, are measured with a time of flight spectrometer. Neutral as well as charged projectiles are used. The scattering angle θ is 30°. The results for different angles of incidence ψ and crystal directions are reported. For scattering in the 〈100〉 direction, with a ψ-value of 15° and a primary energy E0 of 5 and 10 keV, the ion fractions for the quasi single scattering peak, η+QS, are 1.5 and 6.1% respectively. When E0 is between 5 and 10 keV a reionization process with a constant reionization probability occurs during the violent interaction. This process, but also neutralization along the outgoing trajectory, determines η+QS. With ions as projectiles, an energy difference of about 16 eV is observed between the quasi single scattering peaks in the spectra of all scattered particles and of ions only. The ion fraction for the quasi double scattering peak, η+QD. depends largely upon E0, indicating that the efficiency of the reionization process increases with E0. A qualitative discussion of the data is given, using the reionization process and the interatomic neutralization processes along the trajectory of the scattered particles.  相似文献   

2.
The ion fractions η+ of low energy (5–10 keV) neon particles scattered from a Cu(100) surface are measured with a time of flight spectrometer. These fractions are obtained for neutral as well as charged projectiles and for different crystal directions. The scattering angle θ was 30°. For a primary energy E0 of 5 keV neutral projectiles have a value for η+ which is 30 times lower than for charged projectiles; these values are 0.15 and 4.5% respectively. For E0 = 10 keV the values of η+ are about the same (~22%). Energy differences up to 22 eV, depending on E0, are observed between the single scattering peaks in the ion spectra of charged and neutral projectiles but also between the single scattering peak in the spectra of all scattered particles and of ions, with ions as projectiles. A qualitative discussion of these data is given, involving charge transfer processes of noble gas particle and target atom. The data suggest that these neutralization processes can be described more adequately with interatomic neutralization processes along the trajectory than with Auger neutralization by conduction electrons.  相似文献   

3.
Metal surfaces (Mg, Cu, Zr, Mo) are bombarded with He+, Ne+ and Ar+ in the energy range of 400 eV to 8 keV. Radiation from scattered projectiles and sputtered target particles is observed between 200 and 700 nm. It is shown that most of the radiating particles originate from surface collisions. Auger neutralization, resonance tunneling and direct electron transitions are the important electronic processes involved.  相似文献   

4.
The ion fractions, η+, of 10 keV argon particles, scattered from a damaged copper surface, are measured with a time of flight spectrometer. The damage was introduced by bombardment with argon ions. The scattering angle was 30°. The results for different angles of incidence, ψ, are reported. For Ψ < 10° the ion fraction is relatively high (~27% for Ψ = 4°) and decreases as Ψ increases. For Ψ = 15° the value of η+ is 7%, whereas for 21° < Ψ < 27° the value of η+ appears to be constant (~14%). An explanation is given by assuming interatomic ionization as well as neutralization processes along the trajectory of the scattered particles. The number of step-atoms, induced by ion bombardment, is estimated to be about 2 × 1014/cm2.  相似文献   

5.
《Surface science》1986,175(2):385-414
A beam of variable-energy positrons, whose back-diffusion probability is measured as a function of positron implantation energy, is applied to studies of depth distribution of sputtering damage in aluminum. The defects are produced by argon ion bombardment of an Al(110) surface in ultra-high vacuum. We have varied the Ar+ energy, incident angle and dose, as well as sputtering and annealing temperatures. The extracted defect profiles have typically a narrow peak at the surface with a width of 10–20 A and a broader tail extending down to 50–100 Å. The shape of the defect profile varies only slightly with the sputtering energy and angle. Defect production at less than 1 keV Ar+ energies is typically 1–5 vacancies per incident ion. The defect profiles become fluence-independent at about 2 × 1016 Ar+ cm−2. The defect density at the outer atomic layers saturates at high argon fluences to a few at%, depending on sputtering conditions. The sputtering temperature (below or above the vacancy migration stage at 250 K) has little effect on vacancy profiles. Defects anneal out gradually between 100 °C and 400 °C. Sputtering damage was also evaluated with the molecular dynamics technique. The shape and depth scale of the simulated collision cascades are in agreement with the experimentally extracted quantities.  相似文献   

6.
TOF spectra of scattered primary and surface recoiled neutrals and ions for 3 keV Ar+ bombardment of clean La and Yb and H2, O2, and H2O saturated La surfaces are presented. The spectra are analyzed in terms of single (SS) and multiple (MS) scattering of the primary ions and surface recoiling (SR) of adsorbate atoms. Measurement of spectra of neutrals + ions and neutrals alone allows determination of scattered ion fractions Y. The Y values for the SS event are high for clean La (37%) and lower for adsorbate covered La (32% for H2, 13% for O2, and 8% for H2O); Yb exhibits a similar behavior, i.e. 16% for clean Yb and 5% for O2 + H2O covered Yb. Photon emission accompanying the scattering collision has been observed from clean La and Yb and adsorbate covered La. A preferential inelastic energy loss of 15 ± 3 eV for the SS event has been observed for scattered neutrals as opposed to ions for La and H2 saturated La at 135°. These results are interpreted within the models for Auger and resonant electronic charge exchange transitions during approach or departure of an ion with a surface and the electron promotions occuring during close atomic encounters where the electron shells are interpenetrating.  相似文献   

7.
The features of processes occurring on the surface of vanadium and its alloys irradiated using the ILU ion-beam accelerator with Ar+ ions at an energy of 20 and 40 keV up to doses of 5.0 × 1021 m?2 and 1.0 × 1022 m?2 at T irr ≈ 700 K are studied. The effect of the dose and energy of implanted ions on the surface hardness is obtained. The thickness of the hardened layer is more than two orders of magnitude higher than the theoretical and experimental projected range of Ar+ ions at an energy of 20 and 40 keV in vanadium. Structural changes in the surface layers, which are expressed in a change in the intensity of reflections from a number of planes and an increase in the crystal-lattice parameter of the irradiated materials, are also observed.  相似文献   

8.
Sputtering experiments were performed with 70 to 300 keV H+, He+ and Ar+ ions impinging on KC1, KBr and Kl. The alkali halide samples are prepared as polycrystalline layers of about 2500 Å thickness, deposited on carbon-aluminium backings. During the ion bombardment the targets are kept at elevated temperatures between 50 and 300°C, in order to study the temperature dependence of sputtering. During the irradiation the removal of halogen and sodium is simultaneously observed by Rutherford backscattering.

The present results are (i) preferential sputtering of the halogen atoms, (ii) temperature dependent sputtering yields with 0.2 eV activation energy, (iii) sputtering yields proportional to the electronic stopping power, rather than the nuclear stopping power, and (iv) sputtering yields orders of magnitude higher than estimated by elastic collision cascade theories. These findings can be interpreted by a Pooley process with subsequent migration of the interstitial halogen atom to the surface.  相似文献   

9.
TOF spectra of scattered neutrals and ions for 3 keV He+, Ne+, and Ar+ bombardment of La and adsorbate covered La surfaces show that the scattered ion fractions are 21.1% and 10.7% for Ar+ on clean and adsorbate covered La, respectively, and < 1% for all of the other systems. These results are consistent with a model in which Auger and resonant neutralization (AN and RN) transitions govern the ion survival probability.  相似文献   

10.
《Surface science》1986,176(3):657-668
We have studied the multiple scattering of He+, Ne+, and Ar+ from a TaC(001) surface in the energy region of the order of 1 keV. The experimental data revealed large differences between the energy spectra of these ions. The spectral peak corresponding to quasi-double scattering is clearly observed for Ar+ but not observed for Ne+. The multiple scattering effect appearing in the energy spectra of rare-gas ions is discussed on the basis of electron exchange between these ions and solid surfaces.  相似文献   

11.
Auger Electron Spectroscopy has been used to investigate the preferred sputtering behavior on homogeneous Cu/Ni alloy surfaces. Measurements were made on a range of alloy compositions with Ar+ sputter ions of 0.5 to 2 keV energy. A kinetic model has been formulated to describe the time variation of the surface composition during sputtering. Based on this model, we were able to determine the individual sputter yields for Cu and Ni atoms in the alloy and the depth of the surface layer where the composition is altered by sputtering. The sputter yields were found to be relatively independent of the alloy composition but increased almost linearly with energy. The depth of the altered layer was comparable to the Auger sampling depth with its value increasing from 10 Å to more than 20 Å when ion energy increased from 0.5 to 2 keV.  相似文献   

12.
The damage distributions in Si(1 0 0) surface after 1.0 and 0.5 keV Ar+ ion bombardment were studied using MEIS and Molecular dynamic (MD) simulation. The primary Ar+ ion beam direction was varied from surface normal to glancing angle. The MEIS results show that the damage thickness in 1.0 keV Ar ion bombardment is reduced from about 7.7 nm at surface normal incidence to 1.3 nm at the incident angle of 80°. However, the damage thickness in 0.5 keV Ar ion bombardment is reduced from 5.1 nm at surface normal incidence to 0.5 nm at the incident angle of 80°. The maximum atomic concentration of implanted Ar atoms after 1 keV ion bombardment is about 10.5 at% at the depth of 2.5 nm at surface normal incidence and about 2.0 at% at the depth of 1.2 nm at the incident angle of 80°. However, after 0.5 keV ion bombardments, it is 8.0 at% at the depth of 2.0 nm for surface normal incidence and the in-depth Ar distribution cannot be observable at the incident angle of 80°. MD simulation reproduced the damage distribution quantitatively.  相似文献   

13.
Using a 1,3 MeV Van de Graaff-accelerator the sputtering ratioS of polycristalline copper bombarded by normally incident Ne+-, Ar+-, Kr+-, and Xe+-ions was measured in the energy range from 75 keV to 1 MeV. In the case of Kr+-ions a broad, plateau-like maximum of the sputtering-curveS=f(E) was found at about 100 keV, for Xe+-ions a more pronounced maximum at about 125 keV. The results are discussed applying the theories ofGoldman-Simon, Pease, andMartynenko.  相似文献   

14.
Assuming long range charge exchange mechanisms and neglecting shadowing effects, theory predicts the variation of the scattered ion yield with the scattering angle θ and the incidence angle ψ for some well defined experimental conditions. Such measurements were performed for 4He+ scattering on polycrystalline copper at incident energies ranging from 0.5 to 1.25 keV and at scattering angles from 20° to 130°. It is suggested that shadowing effects should be taken into account in order to explain the observed behaviour.  相似文献   

15.
The effects of orientation and subcooling on pool boiling of the HFE-7100 dielectric liquid near atmospheric pressure (0.085 MPa) from a 10 × 10 mm smooth copper surface are investigated experimentally. Results are obtained for inclination angles θ = 0° (upward-facing), 30°, 60°, 90°, 120°, 150°, and 180° (downward-facing) and liquid subcoolings ΔTsub = 0, 10, 20, and 30 K. Increasing θ decreases the saturation nucleate boiling heat flux at high surface superheats (ΔTsat > 20 K), but increases it only slightly at lower surface superheats. The critical heat flux (CHF) decreases slowly with increasing θ from 0° to 90°, and then deceases faster with increasing θ to 180°. CHF increases linearly with increased subcooling, but the rate increases from 0.016 K?1 at 0° to 0.048 K?1 at 180°. At θ = 0° and ΔTsub = 30 K, CHF is ~ 36 W/cm2 and 24.45 W/cm2 for saturation boiling, while at θ = 180° CHF = 10.85 W/cm2 at ΔTsub = 30 K and only 4.30 W/cm2 at saturation. The developed correlation for CHF of HFE-7100, as a function of θ and ΔTsub, is within ±10% of the present data. The recorded still photographs of the boiling surface in the experiments illustrate the effects of liquid subcooling and surface orientation at different nucleate boiling heat fluxes and surface superheats on vapor bubble accumulation and/or induced mixing at the surface.  相似文献   

16.
The position of the edge atoms of a stepped Cu(410) surface has been measured by Ion Scattering Spectroscopy using 21 keV H+. The edge atoms are depressed 5.0±1.5% of the copper lattice spacing, corresponding to 0.18±0.05 Å.  相似文献   

17.
The composition change of the outermost atom layer of TiC(110) under ion bombardment with 1.5–3 keV He+ and He+ + Ar+ ions has been measured by ion scattering spectroscopy with He+ ions at different sample temperatures. It has been found that the preferential sputtering of C atoms takes place for both the He+ and Ar+ ion bombardment, however the preferred sputtering is more pronounced for Ar+ ions than for He+ ions. The ion bombardment with He+ ions at elevated sample temperatures hardly results in any change in surface composition below ~800°C, while Ar+ ion bombardment results in C enrichment for elevated temperatures as reported so far.  相似文献   

18.
The photoabsorption coefficient of molecular oxygen has been measured at 1215.70 Å and in the ranges 1205 Å–1214 Å and 1218 Å–1225 Å with an average resolution of ±0.015 Å. The light source in this experiment was the Doppler shifted radiation obtained from Stark quenching of a metastable hydrogen beam with energies between 2 keV and 60 keV. Using observation angles of 45°, 90°, and 135° with respect to the beam the above mentioned tuning ranges are obtained. Our data join smoothly to those of Ogawa [1] in the range 1214 Å–1218 Å and are in fair agreement with earlier measurements in other laboratories. Analytical expressions for the absorption coefficient for use in geophysical applications are presented for the whole wavelength range 1205 Å–1225 Å. Rotational structure of the absorption coefficient in the range 1220 Å–1223 Å arising from the 3-0 band of theα 1 u + -X 3 g ? forbidden transition in molecular oxygen is clearly resolved in the present measurements. A transition probability ofA=4×104 s?1 is obtained for this system. A careful study of a possible pressure dependence of the absorption coefficient was made. Except from the region were rotational line absorption occurs and the single point at 1215.70 Å no measurable effect was found for pressures below 100 Torr.  相似文献   

19.
The sputtering yield of polycrystalline nickel and chromium was determined as a function of projectile energy (1–8 keV), projectile mass (N+, Ne+, Ar+, Xe+), angle of incidence (0°–75°), and oxygen partial pressure. Where theoretical values exist, the agreement is reasonable.EURATOM Association  相似文献   

20.
Atomic excitation phenomena in sputtering have been studied with the following combinations of projectile and target. (i) Be, B, Mg, Al, and Si bombarded with 80 keV Ar+ at UHV as well as with the target chamber backfilled with oxygen. (ii) Mg bombarded with 80 keV O+, F+, Ne+, Na+ Cl+, and Ar+. (iii) MgO, MgF2, MgCl2, MgSO4, and several alkali halides bombarded with 80 keV Ar+ at UHV. Results are discussed. It is concluded that the excited-state formation takes place as electron tunneling at a fairly large separation between the target surface and the particle being sputtered. It is suggested with composite targets containing a metal element that excitation takes place predominantly at locations of the target surface where the work function is low, due to a thin, metallic surface layer, and that production of ground-state, positive secondary ions mainly takes place at target surface regions with high work function. For semiconductors, the changes caused by presence of oxygen are related to the change of the bonds in the solid from being of covalent nature to being fractionally ionic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号