首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Full-potential linearized augmented plane wave plus local orbital method (FPLAPW + lo) calculations were performed for Fe2VAl and Fe3Al in order to investigate magnetic and optical properties and to show the origin of various optical transitions. It was found that the lattice constant and spin magnetic moments with the GGA method differ more from the respective experimental values than those calculated with the LSDA method. Furthermore, our calculated lattice constant and spin magnetic moments with the LSDA method were in overall better agreement with experiment. Our predictions agreed well with recent experimental reflectivity spectra. Meanwhile, the spectral peaks at the transitions were analyzed from the imaginary part of the dielectric function.  相似文献   

2.
The core levels and valence bands of Fe3C, Fe3Al, Fe3Si and their pure components at temperatures ranging from 20 to 1000° have been investigated. Shifts in Fe 2p32, C 1s, Si 2p and Al 2p confirm the migration of electrons from iron to carbon and from aluminium and silicon to iron. A study of the valence bands of these compounds shows that their electronic structure is determined, in the first approximation, by the type of the second component atoms.  相似文献   

3.
From the temperature dependences of the 59Co Knight shift and the nuclear spin-lattice relaxation rate in the exchange-enhanced paramagnetic metal CoSe2, it is shown that the amplitudes of the temperature-dependent spin density fluctuations are saturated at T1 = 130 K. This fact indicates that there exist local moment type fluctuations above T1. The results obtained from the present NMR investigation are in general accord with the predictions based on the general theory of spin fluctuations in itinerant electron systems developed recently by Moriya and Takahashi.  相似文献   

4.
The giant magnetoimpedance (GMI) effect in amorphous and nanocrystalline Fe73.5Si13.5B8CuV3Al ribbons has been studied as a function of a dc magnetic field, by contact and non-contact methods. In the contact method, an MI of 19% was obtained in the nanocrystalline ribbon while it is of the order of 104 in the non-contact method. The huge sensitivity of the non-contact method is promising with regard to the increase of the sensitivity of the MI sensors. Field dependence of MI has shown double peak behavior in contact method and single peak profile in non-contact method. The domains were found to lie normal to the plane of the ribbon, through MFM studies. All the experimental results were discussed using the Polivanov model.  相似文献   

5.
The paper presents the results of oxidation tests of Fe3Al-based alloys containing additions of Cr, Zr, B, and C, with and without an aluminide coating. The coating was formed by a pack cementation process in which the surface of material got enriched in aluminum. The Al-rich layer was intended to enhance the tendency of Al2O3 formation. The slow-growing Al2O3 scale provides the best corrosion protection for structural materials at high temperatures. The cyclic oxidation tests were performed in laboratory air at 1373 K. The structure and composition of oxide scales as well as their adherence were evaluated and compared for the materials with and without aluminide coatings. Surface enrichment in aluminum and effect minor addition of Zr on oxidation behavior was discussed.  相似文献   

6.
Flake-shaped and sphere-shaped Fe3Al powder-paraffine composites have been studied in the microwave frequency range. Mössbauer results show that the flake-shaped Fe3Al particles have easy magnetization plane, which indicates that it is planar-anisotropy. Enhanced permeability is achieved in flake-shaped Fe3Al compared with the sphere-shaped Fe3Al. The permeability is further enhanced by using a rotational orientation method. The complex permeability can be characterized by the superposition of two types of magnetic resonance. The resonance peak at high frequency is attributed to the natural resonance, while the peak at low frequency is attributed to the domain-wall resonance. By employing the shape effect and the rotational orientation, the peak frequency of reflection loss for the oriented sample was adjusted to L-band. The planar-anisotropy Fe3Al powder-paraffine composite can be attractive candidates for thinner microwave absorbers in L-band (1-2 GHz).  相似文献   

7.
Fabrication and characterization of magnetic Fe3O4-CNT composites   总被引:2,自引:0,他引:2  
Carbon nanotubes (CNTs) decorated with magnetite nanoparticles on their external surface have been fabricated by in situ solvothermal method, which was conducted in benzene at 500 °C with ferrocene and CNTs as starting reagents. The as-prepared composites were characterized using XRD, FTIR, SEM and TEM. It has been found that the amount of magnetite nanoparticles deposited on the CNTs can be controlled by adjusting the initial mass ratio of ferrocene to CNTs. The Fe3O4-CNT composites display good ferromagnetic property at room temperature, with a saturation magnetization value (Ms) of 32.5 emu g−1 and a coercivity (Hc) of 110 Oe.  相似文献   

8.
57Fe and 12C ions were implanted at room temperature into single crystal SiO2 with energies yielding approximately the same calculated ranges. The energies were 60 and 20 keV, respectively for 57Fe and 12C and their corresponding doses were 5 × 1016 and 2 × 1017 at/cm2. The cementite Fe3C was formed after annealing at 650°C with a size of about 7 nm. Magnetic coercive forces of 900 and 800 Oe were obtained at RT and 80 K, respectively. An explanation for such a strong coercivity is suggested.  相似文献   

9.
牛雪莲*  王立久  孙丹 《物理学报》2013,62(3):37104-037104
利用第一原理研究了过渡金属元素 Cr 或 Ni 在 Fe3Al合金中的优先占位行为及其合金化效应. 计算结果表明: Cr 或 Ni 的取代有助于Fe3Al 合金体系更稳定, Cr 优先占据 FeI 位, Ni 优先占据 FeII位. Fe2NiAl-II 具有最小的剪切模量G, 杨氏模量EG/B值, 因此Fe2NiAl-II合金的韧性、延展性最佳. 态密度和电荷密度图表明, 过渡金属元素的取代提高了它们与近邻基体原子之间的相互作用, 削弱了Al和Fe的相互作用.  相似文献   

10.
In this study, the effect of silane treatment of Fe3O4 on the magnetic and wear properties of Fe3O4/epoxy nanocomposites was investigated. Fe3O4 nanopowders were prepared by coprecipitation of iron(II) chloride tetrahydrate with iron(III) chloride hexahydrate, and the surfaces of Fe3O4 were modified with 3-aminopropyltriethoxysilane. The magnetic properties of the powders were measured on unmodified and surface-modified Fe3O4/epoxy nanocomposites using SQUID magnetometer. Wear tests were performed on unmodified and surface-modified Fe3O4/epoxy nanocomposites under the same conditions (sliding speed: 0.18 m/s, load: 20 N).The results showed that the saturation magnetization (Ms) of surface-modified Fe3O4/epoxy nanocomposites was approximately 110% greater than that of unmodified Fe3O4/epoxy nanocomposites. This showed that the specific wear rate of surface-modified Fe3O4/epoxy nanocomposites was lower than that of unmodified Fe3O4/epoxy nanocomposites. The decrease in wear rate and the increase in magnetic properties of surface-modified Fe3O4/epoxy nanocomposites occurred due to the improved dispersion of Fe3O4 into the epoxy matrix.  相似文献   

11.
We report on electrical and magnetic properties of polyaniline (PANI) nanotubes (150 nm in diameter) and PANI/Fe3O4 nanowires (140 nm in diameter) containing Fe3O4 nanoparticles with a typical size of 12 nm. These systems were prepared by a template-free method. The conductivity of the nanostructures is 10−1–10−2 S/cm; and the temperature dependent resistivity follows a ln ρT−1/2 law. The composites (6 and 20 wt% of Fe3O4) show a large negative magnetoresistance compared with that of pure PANI nanotubes and a considerably lower saturated magnetization (Ms=3.45 emu/g at 300 K and 4.21 emu/g at 4 K) compared with the values measured from bulk magnetite (Ms=84 emu/g) and pure Fe3O4 nanoparticles (Ms=65 emu/g). AC magnetic susceptibility was also measured. It is found that the peak position of the AC susceptibility of the nanocomposites shifts to a higher temperature (>245 K) compared with that of pure Fe3O4 nanoparticles (190–200 K). These results suggest that interactions between the polymer matrix and nanoparticles take place in these nanocomposites.  相似文献   

12.
In the present study, the buffering effect of magnetite nanoparticles (Fe3O4) dispersed in an aqueous solution on the local pHpH value is investigated. It manifests itself in the fact that when some amount of acid or base is added to the solution then the solution near the nanoparticles surface becomes, respectively, less acidic and less alkaline than it is expected. It is the result of both the local electrostatic field, which represents the electric double layer at the surface of magnetic nanoparticles and the magnetic field around the nanoparticles. The magnetite nanoparticles exhibit very low toxicity and they are becoming increasingly important for new biomedical applications related to their effects on chemical reactions in body tissues and cells. The question arises, how strong are these effects at the nanoscale? The strength of the buffering property of magnetite nanoparticles is investigated both theoretically and experimentally by the direct measurement of the local pHpH value of a magnetic nanoparticles suspension. The theoretical model is based on stochastic equations describing the ions diffusing in the neighborhood of the electric double layer of the magnetic material. The electric double layer is modeled with the help of the Poisson–Boltzmann model. It is directly shown that both the electrostatic field and the magnetic field are responsible for the observed local changes of the pHpH value with respect to the bulk pHpH value.  相似文献   

13.
王敬平  孟健 《中国物理 B》2008,17(2):1197-1201
通过在半金属Fe3O4合成过程中外加磁场的方法,改变样品粒子的表面结晶状态和晶格缺陷,研究了由此引起的Fe3O4输运性质的变化.合成的Fe3O4粉体的主要导电机理均为自旋极化隧穿和高阶跃迁电导,电阻随温度升高成指数降低,电阻与电压显示了非线形相关性,磁阻与磁场的关系为蝴蝶形,是典型的隧道磁阻特征.与没有外加磁场时合成的样品比较,外加磁场合成的样品显示了更低的电阻和更高的磁阻.  相似文献   

14.
王敬平  孟健 《物理学报》2008,57(2):1197-1201
通过在半金属Fe3O4合成过程中外加磁场的方法,改变样品粒子的表面结晶状态和晶格缺陷,研究了由此引起的Fe3O4输运性质的变化.合成的Fe3O4粉体的主要导电机理均为自旋极化隧穿和高阶跃迁电导,电阻随温度升高成指数降低,电阻与电压显示了非线形相关性,磁阻与磁场的关系为蝴蝶形,是典型的隧道磁阻特征.与没有外加磁场时合成的样品比较,外加磁场合成的样品显示了更低的电阻和更高的磁阻. 关键词: 磁阻 隧穿 表面 晶格缺陷  相似文献   

15.
In this paper,we report on the magnetic properties of Fe3O4 nanoparticles with different grain sizes under different pressures.In all the samples,the saturated magnetization Ms shows a linear decrease with increasing pressure.The thickness of the magnetic dead layer on the nanoparticle surface nuder different pressures was roughly estimated,which also increases with increasing pressure.The transport measurements of the nanoparticle Fe3O4 compacts show that the low-field magnetoresistance (MR) value is insensitive to the grain size in a wide temperature range;however,the high-field MR value is dependent on grain size,especially at low temperatures.These experimental results can be attributed to the different surface states of the nanoparticles.  相似文献   

16.
Magnetic Fe3O4 materials with mesoporous structure are synthesized by co-precipitation method using yeast cells as a template. The X-ray diffraction (XRD) pattern indicates that the as-synthesized mesoporous hybrid Fe3O4 is well crystallized. The Barrett-Joyner-Halenda (BJH) models reveal the existence of mesostructure in the dried sample which has a specific surface area of 96.31 m2/g and a pore size distribution of 8-14 nm. Transmission electron microscopy (TEM) measurements confirm the wormhole-like structure of the resulting samples. The composition and chemical bonds of the Fe3O4/cells composites are studied by Fourier transform infrared (FT-IR) spectroscopy. Preliminary magnetic properties of the mesoporous hybrid Fe3O4 are characterized by a vibrating sample magnetometer (VSM). The magnetic Fe3O4/cells composites with mesoporous structure have potential applications in biomedical areas, such as drug delivery.  相似文献   

17.
18.
The weak field ac susceptibility and the resistivity of Fe2P single crystals were measured as functions of temperature from 4.2–300 K and as functions of hydrostatic pressures up to 20 kbar, using a newly designed clamp-type pressure cell. The Curie temperature, and the first-order transition temperature, decreased rapidly with increasing pressure, and ferromagnetism vanished at about 13 kbar at 0 K. A second-order transition temperature, as well as the first-order transition, appeared in the region below 170 K and above 5 kbar (triple point) and a new pressure-induced magnetic phase was found. The phase is proposed to be antiferromagnetic for reasons discussed in the paper.  相似文献   

19.
Fe3O4 magnetic nanoparticles were prepared by co-precipitation from FeSO4·7H2O and FeCl3·6H2O aqueous solutions using NaOH as precipitating reagent. The nanoparticles have an average size of 12 nm and exhibit superparamagnetism at room temperature. The nanoparticles were used to prepare a water-based magnetic fluid using oleic acid and Tween 80 as surfactants. The stability and magnetic properties of the magnetic fluid were characterized by Gouy magnetic balance. The experimental results imply that the hydrophilic block of Tween 80 can make the Fe3O4 nanoparticles suspending in water stable even after dilution and autoclaving. The magnetic fluid demonstrates excellent stability and fast magneto-temperature response, which can be used both in magnetic resonance imaging and magnetic fluid hyperthermia.  相似文献   

20.
With this work we present a newly developed potential for the Fe–Al system, which is based on the analytical embedded atom method (EAM) with long range atomic interactions. The potential yields for the two most relevant phases B2-FeAl and D03-Fe3Al lattice constants, elastic constants, as well as bulk and point defect formation enthalpies, which are in good agreement with experimental and other theoretical data. In addition, the phonon dispersions for B2-FeAl and D03-Fe3Al show a good agreement with available experiments. The calculated lattice constants and formation enthalpy for disordered Fe–Al alloys are in good agreement with experimental data or other theoretical calculations. This indicates that the present EAM potentials of Fe–Al system is suitable for atomistic simulations of structural and kinetic properties for the Fe–Al system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号