首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A.M. Baró  H. Ibach 《Surface science》1981,103(1):248-256
We present the angular distribution of inelastic intensities corresponding to the excitation of the vibrational modes of CO chemisorbed on Pt(111). The experimental values are compared with those predicted by dipole scattering. All the vibrational modes, including the C-metal, stretch, show experimental values larger than theoretical ones. The difference is attributed to vibrational excitation by impact scattering. The impact scattering cross section is found to be energy dependent and increases for low primary energies (2 eV). The differential cross section is, however, smaller than that observed for resonant scattering in free CO.  相似文献   

2.
Overlayers formed by the adsorption of Ni(CO)4 in CO on the Ni(111) surface at 100 K were characterized using high resolution electron energy loss spectroscopy and thermal desorption spectroscopy. At temperatures below 135 K, molecular nickel carbonyl adsorbs on the CO saturated Ni(111) surface as suggested by several observations. Vibrational transitions characteristic of molecular Ni(CO)4 are dominant. The energy dependence of both the elastic and inelastic electron scattering cross sections are dramatically altered by Ni(CO)4 adsorption. All of the mass spectrometer ionization fragments typical of molecular Ni(CO)4 are observed in the narrow thermal desorption peak at 150 K. The inelastic scattering cross sections for both adsorbed nickel carbonyl and adsorbed CO on the Ni(111) surface suggest that a nonresonant dipole scattering mechanism is dominant.  相似文献   

3.
We show that the enhancement of the saturation scale in large nuclei relative to the proton is significantly influenced by the effects of quantum evolution and the impact parameter dependence of dipole cross sections in high energy QCD. We demonstrate that there is a strong A dependence in diffractive deeply inelastic scattering and discuss its sensitivity to the measurement of the recoil nucleus.  相似文献   

4.
The matrix element in the infinite channel close coupling approximation responsible for coupling to the elastic channel in electron impact inelastic encounters is investigated. The contribution from the imaginary part of the energy denominator in the elastic coupling matrix element for dipole allowed transitions is shown to yield large angle differential cross sections in good agreement with experiment. This coupling mechanism predicts that the shape of the inelastic differential cross section will be dominated by the shape of the elastic cross section in the large angle high energy limit. In fact the coupling matrix element exhibits a dependence on incident energy, k2, and momentum transfer, K, of the form 1/kK2 which is in agreement with the theoretical predictions of Huo and means that in the limit of high incident energy the non-first-Born elastic coupling will dominate the angular dependence of the inelastic differential cross section at large scattering angles. In the case of molecular electron impact spectra it is shown that the analog of the Massey—Moore coherence features depending on the symmetry of the states involved in the excitation process will also occur in the coupling contribution. It is suggested that this new mechanism for producing coherent features in inelastic differential cross sections may be the explanation of the coherent features observed experimentally by Karle and Swick.It can be concluded on the basis of the results obtained here that the coupling to the elastic cross section provided by the imaginary contribution from the second Born energy denominator is sufficient to explain presently available experimental data on the large angle differential cross section and spin polarization. The simple coupling model was found to be inadequate to explain the small angle differential cross section in the range 10° < θ < 30° even at incident energies as high as 400 eV. The calculations also showed significant differences between first and second Born calculations at zero scattering angle. No conclusion can be drawn about this observation as all the omitted terms should make significant contributions in the small angle region. It is important to again emphasize that the large angle scattering even in the limit of high incident electron energy will be completely dominated by the coupling to the elastic channel7, 11. On the basis of this work it appears that the coherent structure in the large angle inelastic differential cross section observed by Swick and Karle12, 13 at incident electron energies in the keV region may well be due to coupling to the elastic channel.  相似文献   

5.
We have reported on the results of a complex investigation of iron disilicide FeSi2 using characteristic electron energy loss spectroscopy, inelastic electron scattering cross section spectroscopy, and X-ray photoelectron spectroscopy. It has been shown that the main peak in the spectra of inelastic electron scattering for FeSi2 is a superposition of two unresolved peaks, viz., surface and bulk plasmons. An analysis of the fine structure of the spectra of inelastic electron scattering cross section by their decomposition into Lorentzlike Tougaard peaks has made it possible to quantitatively estimate the contributions of individual energy loss processes to the resulting spectrum and determine their origin and energy.  相似文献   

6.
Previously reported experimental results for inelastic cross sections for rotational excitation of TlF molecules in low-lying, well defined rotational states are interpreted in terms of a time dependent perturbation theory formulation of the high energy approximation. In order to calculate inelastic cross sections for the observed small angle scattering the Born approximation and the classical deflection function are shown to be applicable. In this approximation the ΔJ selection rules are characteristic of the individual terms in the expansion of the potential, whereas the ΔM selection rules depend on the orientation of the molecule with respect to the scattering trajectory. An approximation for dealing with a scattering gas consisting of molecules is introduced and the appropriate orientation averaging is carried out for the case of a generalized electrostatic potential. The measured results for the transition TlF(2.0)→ (3.0) in collisions with the rare gases and CH4 and SF6 are more than a factor three larger than calculated results for the induced dipole-quadrupole (α, μ, Q) interaction. Rough argeement is found between calculated results for a dipole-quadrupole interaction and the experimental results for the above mentioned transition produced by the scattering gases O2, N2 (air), N2O, and H2O. Finally, the dipole-dipole potential appears to provide an explanation for the large inelastic cross sections observed with NH3 and CF2Cl2. Calculated inelastic and total cross sections are however considerably larger (about a factor 2) than the measured results with NH3. Possible explanations are discussed.  相似文献   

7.
This article reports electron impact ionisation cross sections for platinum-based drugs viz., cisplatin (H6N2Cl2Pt), carboplatin (C6H12N2O4Pt), oxaliplatin (C8H14N2O4Pt), nedaplatin (C2H8N2O3Pt) and satraplatin (C10H22ClN2O4Pt) complexes used in the cancer chemotherapy. The multi-scattering centre spherical complex optical potential formalism is used to obtain the inelastic cross section for these large molecules upon electron impact. The ionisation cross section is derived from the inelastic cross section employing complex scattering potential–ionisation contribution method. Comparison is made with previous results, where ever available and overall a reasonable agreement is observed. This is the first attempt to report total ionisation cross sections for nedaplatin and satraplatin complexes.  相似文献   

8.
The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.  相似文献   

9.
Absolute intensities of electrons scattered by amorphous carbon and germanium foils were measured for various energies (20–60 keV) and foil thicknesses (200–800 Å). Electrons scattered elastically were separated from those scattered inelastically by means of a retarding field. Thus total cross sectionsσ e for elastic scattering andσ u for inelastic scattering were obtained. Agreement of observed and theoretical values is satisfactory, especially regarding the dependence on electron energy.  相似文献   

10.
刘安雯  胡水明  丁昀  朱清时 《中国物理》2005,14(10):1946-1953
Stretching vibrational band intensities of XH3 (X=N, Sb) molecules are investigated employing three-dimensional dipole moment surfaces combined with the local mode Hamiltonian model.The dipole moment surfaces of NH3 and SbH3 are calculated with the density functional theory and at the correlated MP2 level,respectively. The calculated band intensities are in good agreement with the available experimental data. The contribution to the band intensities from the different terms in the polynomial expansion of the dipole moments of four group V hydrides (NH3, PH3,AsH3 and SbH3) are discussed. It is concluded that the breakdown of the bond dipole approximation must be considered. The intensity “borrowing” effect due to the wave function mixing among the stretching vibrational states is found to be less significant for the molecules that reach the local mode limit.  相似文献   

11.
采用密度泛函理论和slab模型,研究NH3在Ni单原子层覆盖的Pt(111)和WC(001)表面上的物理与化学行为,计算了Ni单原子覆盖表面的电子结构以及NH3的吸附与分解.表面覆盖的单原子层中,Ni原子的性质与Ni(111)面上的Ni原子明显不同.与Ni(111)相比,Ni/Pt(111)和Ni/WC(001)表面上Ni原子dz2轨道上的电子更多地转移到了其它位置,该轨道上电荷密度降低有利于NH3吸附.在Ni/Pt(111)和Ni/WC(001)面上NH3吸附能均大于Ni(111),NH3分子第一个N-H键断裂的活化能则明显比Ni(111)面上低,有利于NH3的分解,吸附能增大使NH3在Ni/Pt(111)和Ni/WC(001)面上更倾向于分解,而不是脱附.N2分子的生成是NH3分解的速控步骤,该反应能垒较高,说明N2分子只有在较高温度下才能生成.WC与Pt性质相似,但Ni/Pt(111)和Ni/WC(001)的电子结构还是有差异的,与Ni(111)表面相比,NH3在Ni/Pt(111)表面上分解速控步骤的能垒降低,而在Ni/WC(001)上却升高.要获得活性好且便宜的催化剂,需要对Ni/WC(001)表面做进一步改进,降低N2分子生成步骤的活化能.  相似文献   

12.
《Nuclear Physics A》1987,464(3):395-414
Measurements of differential elastic and inelastic cross sections for neutron scattering from 16O at incident energies 18 to 26 MeV are presented. In addition to cross sections for neutron scattering differential cross sections for proton scattering up to 66 MeV are described in terms of phenomenological optical model potentials. At 24.5 MeV incident energy inelastic scattering up to 11.5 MeV excitation was measured. The elastic and inelastic compound nucleus contributions were examined. Direct inelastic scattering from the normal parity states was calculated using the DWBA and coupled-channel formalisms. The inelastic scattering cross section from non-normal parity state 2 was calculated using the coupled-channel formalism via multi-step processes. Cross sections due to inelastic scattering from some of the states, which are thought to be members of an excited state rotational band were calculated using both vibrational and rotational approaches and were compared.  相似文献   

13.
The vibrational spectra of NH4Cl at pressures of up to 2.6 GPa and of NH4Br at pressures of up to 7 GPa are investigated by the method of inelastic incoherent scattering of neutrons. It is found that a linear baric dependence of a librational mode changes its slope above the pressure of transition from a disordered cubic phase into an ordered cubic phase with a CsCl-type structure. The slope of the baric dependence of the transverse optical translational mode remains invariant. Estimates for the Grüneisen parameters are presented and the shape of the potential function is calculated in the one-dimensional approximation for librational vibrations in disordered and ordered cubic phases with a CsCl-type structure. It is shown that the phenomena observed are attributed to the high anharmonicity in the disordered phase.  相似文献   

14.
The dynamic magnetic susceptibility spectrum in a single-crystal sample of the intermediate-valence compound Sm0.67Y0.33S is studied by inelastic neutron scattering with neutron momentum transfer and sample temperatures varying over wide ranges. Two coupled collective modes have been found in the spectrum. Unlike the higher energy mode, whose intensity approximately follows the form factor of Sm2+, the lower energy mode exhibits a stronger angular dependence than could be expected from the form factor for the localized f electrons. The total intensity of the inelastic component of the magnetic response decreases with increasing temperature; this is accompanied by the appearance of a broad quasi-elastic signal of a magnetic nature at significantly lower temperatures than follows from the calculated intensities of the transitions within the excited multiplet of the Sm2+ ion. An analysis of the observed features allows the suggestion to be made that the fine structure of the magnetic excitation spectrum in (Sm,Y)S is associated with the formation of an exciton-like intermediate-valence state on Sm ions rather than with the crystal-electric-field effects.  相似文献   

15.
Thermal effects for inelastic neutrino-nucleus scattering off even-even nuclei in the iron region are studied. Allowed and first-forbidden contributions to the cross sections are calculated within the quasiparticle random-phase approximation, extended to finite temperatures within the Thermo-Field-Dynamics formalism. The GT0 strength distribution at finite temperatures is calculated for the sample nucleus 54Fe. The neutral-current neutrino-nucleus inelastic cross section is calculated for relevant temperatures during the supernova core collapse. The thermal population of the excited states significantly enhances the cross section at low neutrino energies. In agreement with studies using a large scale shell-model approach the enhancement is mainly due to neutrino up-scattering at finite temperatures.  相似文献   

16.
The contributions of two-particle transfer to elastic and inelastic scattering of heavy ions are treated simultaneously in the coupled channels framework using microscopic transfer form factors. As an example, the reaction 18O(16O, 16O)18O(g.s. and 21+) is investigated at three energies near the Coulomb barrier. The interference between scattering and transfer leads to a consistent interpretation of both elastic and inelastic data. Indirect transfer contributions give relatively small, but non-negligible corrections to the direct scattering plus transfer result, removing a previously reported energy dependence of the spectroscopic factor.  相似文献   

17.
采用振动密耦合方法,分别应用球高斯分布极化势和优于绝热极化势,及基于量子力学从头计算的静电、交换势,得到入射电子能量2.40eV时0→2和0→3的振动激发微分散射截面,与目前优秀的实验值比较,获得了满意的结果,并从理论上分析了整个计算过程中可能影响微分散射截面精度的主要物理因素. 关键词: 分子碰撞 微分散射截面 振动激发 相互作用势  相似文献   

18.
An atomic projectile colliding with a surface at kinetic energies in the thermal or hyperthermal range interacts with and is reflected by the electronic density well in front of the first layer of target atoms, and it is generally accepted that the repulsive interaction potential is proportional to the density of electrons extending outside the surface. This review develops a complete treatment of the elastic and inelastic scattering of atoms from a conducting surface in which the interaction with the electron density and its vibrations is treated using electron-phonon coupling theory. Starting from the basic principles of formal scattering theory, the elastic and inelastic scattering intensities are developed in a manner that identifies the small overlap region in the surface electron density where the projectile atom is repelled. The effective vibrational displacements of the electron gas, which lead to energy transfer through excitation of phonons, are directly related to the vibrational displacements of the atomic cores in the target crystal via electron-phonon coupling. The effective Debye-Waller factor for atom-surface scattering is developed and related to the mean square displacements of the atomic cores. The complex dependence of the Debye-Waller factor on momentum and energy of the projectile, including the effects of the attractive adsorption well in the interaction potential, are clearly defined. Applying the standard approximations of electron-phonon coupling theory for metals to the distorted wave Born approximation leads to expressions which relate the elastic and inelastic scattering intensities, as well as the Debye-Waller factor, to the well known electron-phonon coupling constant λ. This treatment reproduces the previously obtained result that the intensities for single phonon inelastic peaks in the scattered spectra are proportional to the mode specific mass correction components λQ,ν defined by the relationship λ = 〈λQ,ν〉. The intensities of elastic diffraction peaks are shown to be a weighted sum over the λQ,ν, and the Debye-Waller factor can also be expressed in terms of a similar weighted summation. In the simplest case the Debye-Waller exponent is shown to be proportional to λ and for simple metals, metal overlayers, and other kinds of conducting surfaces values of λ are extracted from available experimental data. This dependence of the elastic and inelastic scattering, and that of the Debye-Waller factor, on the electron-phonon coupling constant λ shows that measurements of elastic and inelastic spectra of atomic scattering are capable of revealing detailed information about the electron-phonon coupling mechanism in the surface electron density.  相似文献   

19.
The spin excitations of an Eu0.4Sr0.6S spin glass are calculated numerically, taking also the dipole interaction into account, in addition to nearest- and next-nearest neighbour exchange. The influence of this additional interaction is found to be small and thus apparently cannot explain the present discrepancies between the theory and inelastic neutron scattering experiments. Switching on the dipole interaction corresponds to an effective enhancement of the Eu concentration of roughly 0.08.  相似文献   

20.
An apparatus is described for measuring the inelastic differential cross section for vibrational excitation in collisions of diatomic molecules with monoenergetic ions at laboratory energies between 10 and 50 eV. The method consists of measuring the time of flight of single ions with a time amplitude converter and displaying the results on a 100 channel pulse height analyzer. From the shift in the time of flight relative to that expected for elastic scattering the final state of the molecule excited in a single collision is identified. By studying only central collisions with almost zero impact parameter rotational excitation is strongly suppressed. Measured times of flight after collisions of monoenergetic Li+ ions with H2 show that with increasing energy the most probable vibrational quantum jump increases from 0→1 to 0→2,0→3 etc. Contrary to the usual assumption of a small steric factor for vibrational excitation the results show that the inelastic cross section is larger than the elastic cross section. Using reported potential parameters the energy dependence of the most probable excited state is compared with the calculations of Secrest and Johnson for a one-dimensional collinear collision. The satisfactory agreement suggests that the steric factor is close to 1. From measurements at different scattering angles at 10 eV the integral inelastic cross section is found to be about 0.2 Å2 corresponding to a differential cross section of 0.4 Å2/sr. Measured values of integral and differential total cross sections for Li+-He andLi+-H2 are reported and compared with theory. Direct dissociation of D2 by Li+ in the energy range from 25 to 55 eV was not observed, yielding an upper limit for the cross section of 4 · 10?4 Å2/sr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号