首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2 were measured as a function of laser fluence, number of laser pulses, and oxygen exposure. If the laser fluence exceeds 10 mJ/cm2 desorption from clean particles occurs as a thermal reaction. Oxygen exposure as low as 1 L causes a strong decrease in the number of desorbed atoms and dimers. For larger oxygen coverages desorption of Na2O molecules is observed and, surprisingly, the atom signal recovers. At this stage, the underlying mechanism is substantially different from that for clean particles. The results can be explained by a model that takes into account the formation of a Na2O layer around a Na core and diffusion of Na atoms through the oxide layer prior to desorption. Received: 15 December 1997/Accepted: 16 December 1997  相似文献   

2.
The adsorption and desorption of O2 on a Pt(111) surface have been studied using molecular beam/surface scattering techniques, in combination with AES and LEED for surface characterization. Dissociative adsorption occurs with an initial sticking probability which decreases from 0.06 at 300 K to 0.025 at 600 K. These results indicate that adsorption occurs through a weakly-held state, which is also supported by a diffuse fraction seen in the angular distribution of scattered O2 flux. Predominately specular scattering, however, indicates that failure to stick is largely related to failure to accommodate in the molecular adsorption state. Thermal desorption results can be fit by a desorption rate constant with pre-exponential νd = 2.4 × 10?2 cm2 s?1 and activation energy ED which decreases from 51 to 42 kcal/mole?1 with increasing coverage. A forward peaking of the angular distribution of desorbing O2 flux suggests that part of the adsorbed oxygen atoms combine and are ejected from the surface without fully accomodating in the molecular adsorption state. A slight dependance of the dissociative sticking probability upon the angle of beam incidence further supports this contention.  相似文献   

3.
《Surface science》1994,303(3):L385-L391
The oxygen-exchange reaction between N16O and 18O2 coadsorbed on Pt(111) has been studied by temperature-programmed desorption (TPD). Reaction products of N18O and 18O16O are desorbed from Pt(111) initially saturated with 18O2 at 94 K followed by exposure of N16O. Three distinct desorption peaks are observed in N18O TPD spectra at 145, 310, and 340 K, and two peaks in 18O16O at 155 K and between 600 and 1000 K. In contrast, the exchange reaction is greatly suppressed when oxygen molecules are replaced with oxygen adatoms at three-fold hollow sites of Pt(111). These results strongly suggest that adsorbed oxygen molecules are responsible for the exchange reaction. NO2 or NO3 is postulated as a reaction intermediate. However, since desorption signals corresponding to these species are not detected, the oxygen-exchanged products are not due to the cracking processes of the higher order nitrogen oxides in the mass spectrometer. Thus, the reaction proceeds via the intermediate that is dissociated during the elevation of surface temperature.  相似文献   

4.
The interaction of oxygen with Ag(111) has been studied over the pressure range 10?2?1.0 Torr. Thermal desorption measurements using isotopically labelled molecules unambiguously establish the presence of a stable chemisorbed dioxygen species which co-exists with adsorbed atomic oxygen. Dissolved oxygen undergoes exchange with the latter species but not with the former. The maximum dioxygen population is found to be markedly sensitive to gas dosing pressure; a model is proposed which accounts for these observations and for related observations on alkali-doped Ag. XP and UP spectral features can be correlated with the two types of oxygen species; angle-resolved XP and Auger spectra indicate that O2 (a) resides on the metal surface whereas O(a) is located within the surface. The XP spectra also suggest that in the case of O2(a) the molecular axis may lie perpendicular to the surface.  相似文献   

5.
《Surface science》1987,180(1):1-18
Thermal programmed desorption (TPD), high resolution electron energy loss spectroscopy (HREELS), and time-resolved laser-induced desorption (LID) have been used to study the chemisorption and decomposition of ethylene over Ni(100). Ethylene adsorbs molecularly on this surface at temperatures below 150 K. The molecule is π bonded in this state, showing very little rehybridization. At coverages below half saturation, decomposition to vinyl plus a hydrogen atom occurs unimolecularly with a rate constant of (8.0 ± 2.0) × 10−2 s−1 at 170 K. A strong kinetic isotope effect was observed; vinyl formation from C2D4 does not occur until about 200 K. The proposal of vinyl as the intermediate is supported by studies with C2H4, 1,1− and 1,2−C2D2H2, and C2D4. The reaction is slower at saturation coverages, where molecular desorption is still seen above 200 K. Vinyl decomposes further at 230 K to form an acetylenic fragment.  相似文献   

6.
The chemisorption and reactivity of O2 and H2 with the sulfided Mo(100) surface and the basal (0001) plane of MoS2 have been studied by means of Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED). These studies have been carried out at both low (10?8–10?5Torr) and high (1 atm) pressures of O2 and H2. Sulfur desorbs from Mo(100) both as an atom and as a diatomic molecule. Sulfur adsorbed on Mo(100) blocks sites of hydrogen adsorption without noticeably changing the hydrogen desorption energies. TDS of 18O coadsorbed with sulfur on the Mo(100) surface produced the desorption of SO at 1150 K, and of S, S2 and O, but not SO2. A pressure of 1 × 10?7 Torr of O2 was sufficient to remove sulfur from Mo(100) at temperatures over 1100 K. The basal plane of MoS2 was unreactive in the presence of 1 atm of O2 at temperatures of 520 K. Sputtering of the MoS2 produced a marked uptake of oxygen and the removal of sulfur under the same conditions.  相似文献   

7.
Thermal desorption and work function measurements indicate that a largely molecular layer, with some dissociation, is formed at 80–100 K, with an increase in work function of 0.55 eV. The coverage in this layer is 11.5 × 1014 molecules/cm2, or CO/W = 1.15. On heating, equal amounts of a β precursor, possibly dissociated, and a molecular α species are formed at ≈300 K, with abundances of 5 × 1014 molecules/cm2 each. The α desorption is complete at 360 K. The β precursor evolves on heating without desorption in the range 400–700 K as indicated by work function decreases, to β-CO, which is almost certainly dissociated. This change occurs at lower temperatures for low coverages. Thermal desorption shows 3 peaks, which have been traditionally labelled β1, β2, and β3 at 930, 1070, and 1375 K. Of these only β3 corresponds to a well defined state. Readsorption after heating to 950 or 1150 K results in a doubly peaked spectrum at 1070 and 1375 K. The β1 and β2 peaks obey complex desorption kinetics, probably corresponding to desorption and rearrangement. The coverage of β3 is 2.5 × 1014 molecules/cm2, suggesting that the c(2 × 2) LEED pattern corresponds to occupany of every other unit cell by a C or an O atom. For coverages ? 1.5 × 1014 molecules/cm2 β3 desorption obeys second order kinetics with an activation energy of 83 ± 3 kcal/mole. For β3 the work function decreases from the clean W value by 0.1 eV, suggesting adsorption of C and O in the center of the W unit mesh, below the surface layer of W atoms. Readsorption on β and β precursor layers leads to formation of electropositive α-CO, with a multiply peaked thermal desorption spectrum, indicating the existence of different binding sites. Adsorption-heatingreadsorption, -heating-readsorption sequences indicate that additional changes in the α desorption spectrum occur, suggesting reconstruction in the β layer.  相似文献   

8.
The adsorption and reaction of water on clean and oxygen covered Ag(110) surfaces has been studied with high resolution electron energy loss (EELS), temperature programmed desorption (TPD), and X-ray photoelectron (XPS) spectroscopy. Non-dissociative adsorption of water was observed on both surfaces at 100 K. The vibrational spectra of these adsorbates at 100 K compared favorably to infrared absorption spectra of ice Ih. Both surfaces exhibited a desorption state at 170 K representative of multilayer H2O desorption. Desorption states due to hydrogen-bonded and non-hydrogen-bonded water molecules at 200 and 240 K, respectively, were observed from the surface predosed with oxygen. EEL spectra of the 240 K state showed features at 550 and 840 cm?1 which were assigned to restricted rotations of the adsorbed molecule. The reaction of adsorbed H2O with pre-adsorbed oxygen to produce adsorbed hydroxyl groups was observed by EELS in the temperature range 205 to 255 K. The adsorbed hydroxyl groups recombined at 320 K to yield both a TPD water peak at 320 K and adsorbed atomic oxygen. XPS results indicated that water reacted completely with adsorbed oxygen to form OH with no residual atomic oxygen. Solvation between hydrogen-bonded H2O molecules and hydroxyl groups is proposed to account for the results of this work and earlier work showing complete isotopic exchange between H216O(a) and 18O(a).  相似文献   

9.
《Surface science》1987,182(3):499-520
Photoelectron spectroscopy (UPS), thermal desorption spectroscopy (TDS), isotope exchange experiments, work function change (δφ) and LEED were used to study the adsorption and dissociation behavior of H2O on a clean and oxygen precovered stepped Ni(s)[12(111) × (111)] surface. On the clean Ni(111) terraces fractional monolayers of H2O are adsorbed weakly in a single adsorption state with a desorption peak temperature of 180 K, just above that of the ice multilayer desorption peak (Tm = 155 K). In the angular resolved UPS spectra three H2O induced emission maxima at 6.2, 8.5 and 12.3 eV below EF were found for θ ≈ 0.5. Angular and polarization dependent UPS measurements show that the C2v symmetry of the H2O gas-phase molecule is not conserved for H2O(ad) on Ni(s)(111). Although the Δφ suggest a bonding of H2O to Ni via the negative end of the H2O dipole, the O atom, no hints for a preferred orientation of the H2O molecular axes were found in the UPS, neither for the existence of water dimers nor for a long range ordered H2O bilayer. These results give evidence that the molecular H2O axis is more or less inclined with respect to the surface normal with an azimuthally random distribution. H2O adsorption at step sites of the Ni(s)(111) surface leads in TDS to a desorption maximum at Tm = 225 K; the binding energy of H2O to Ni is enhanced by about 30% compared to H2O adsorbed on the terraces. Oxygen precoverage causes a significant increase of the H2O desorption energy from the Ni(111) terraces by about 50%, suggesting a strong interaction between H2O and O(ad). Work function measurements for H2O+O demonstrate an increase of the effective H2O dipole moment which suggests a reorientation of the H2O dipole in the presence of O(ad), from inclined to a more perpendicular position. Although TDS and Δφ suggest a significant lateral interaction between H2O+O(ad), no changes in the molecular binding energies in UPS and no “isotope exchange” between 18O(ad) and H216O(ad) could be observed. Also, dissociation of H2O could neither be detected on the oxygen precovered Ni(s)(111) nor on the clean terraces.  相似文献   

10.
The adsorption of hydrogen on Pt (100) was investigated by utilizing LEED, Auger electron spectroscopy and flash desorption mass spectrometry. No new LEED structures were found during the adsorption of hydrogen. One desorption peak was detected by flash desorption with a desorption maximum at 160 °C. Quantitative evaluation of the flash desorption spectra yields a saturation coverage of 4.6 × 1014 atoms/cm2 at room temperature with an initial sticking probability of 0.17. Second order desorption kinetics was observed and a desorption energy of 15–16 kcal/mole has been deduced. The shapes of the flash desorption spectra are discussed in terms of lateral interactions in the adsorbate and of the existence of two substates at the surface. The reaction between hydrogen and oxygen on Pt (100) has been investigated by monitoring the reaction product H2O in a mass spectrometer. The temperature dependence of the reaction proved to be complex and different reaction mechanisms might be dominant at different temperatures. Oxygen excess in the gas phase inhibits the reaction by blocking reactive surface sites. At least two adsorption states of H2O have to be considered on Pt (100). Desorption from the prevailing low energy state occurs below room temperature. Flash desorption spectra of strongly bound H2O coadsorbed with hydrogen and oxygen have been obtained with desorption maxima at 190 °C and 340 °C.  相似文献   

11.
18O/16O isotope effects were observed at the cathode of a polymer electrolyte membrane fuel cell at 25 and 35°C. Results of experiments in which the 18O/16O isotope ratios of the oxygen gases supplied to and exhausted from the cell were measured revealed that the lighter isotope 16O reacted more preferentially to form water molecules at the cathode than the heavier one, 18O. The value of the oxygen isotope separation factor, S1, defined as the ratio of the 18O/16O isotope ratios of the oxygen gases supplied to and exhausted from the cell, ranged from 1.0030 to 1.0139, and tended to decrease with decreasing rate of oxygen utilisation (θ) and with increasing flow rate of the feed oxygen gas (DF). The value of another separation factor, S2, defined as the ratio of the 18O/16O isotope ratios of the exhausted oxygen gas and oxygen having reacted to form water molecules at the cathode, ranged from 1.0049 to 1.0304. The S2 value was much less affected by the change in θ and DF than the S1 value with the majority of the S2 value being in the range of 1.0240–1.0304.  相似文献   

12.
The coadsorption of PH3 with H2, D2, O2 and H2O on Rh(100) has been studied using temperature programmed desorption (TPD), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). The adsorption and molecular desorption of PH3 is not affected by preadsorbed H2, D2 and O2. Preadsorbed PH3 blocks H2 desorption sites while postdosed PH3 displaces H2 (D21) from the Rh(100). When D2 and PH3 are coadsorbed, no D appears in desorbed phosphine. Preadsorbed O2 reduces the amount of H2 desorption (from PH3 decomposition) and increases the H2 desorption temperature. There is also some reaction between O(a) and H(a) to form water. Preexposure to H2O decreases the extent of PH3 adsorption and of PH3 decomposition.  相似文献   

13.
F. Khanom 《Surface science》2007,601(14):2924-2930
We have studied D abstraction by O on the D/Si(1 0 0) surfaces using a continuous as well as pulsed O-beams. Both D2 and D2O molecules are detected during O-exposure. The D2 desorption is found to take place more efficiently on the monodeuteride/dideuteride surface than on the monodeuteride surface. The pulsed beam experiments exhibit occurrence of both a slow and a fast D2 desorption. The D2 desorption is found to obey the second-order rate law in on the monodeuteride surfaces and 3.5th-order rate law on the monodeuteride/dideuteride surfaces. The D2O desorption is found to be governed also by the second-order rate law, however regardless of D coverage even on the monodeuteride/dideuteride surfaces. Possible mechanisms for the O-induced desorption from the D/Si(1 0 0) surfaces are discussed.  相似文献   

14.
《Surface science》1986,167(1):101-126
The kinetics and mechanism of the decomposition of methanol (CH3OD) on oxygen-covered Pt(111) were studied using static secondary ion mass spectrometry (SIMS) and temperature programmed desorption (TPD). The initial sticking coefficient and the saturation first layer coverage of CH3OD are unity and 0.36 ML, respectively. The maximum amounts decomposed in TPD on O/Pt(111) and clean Pt(111) are 0.19 and 0.047 ML, respectively. At low methanol coverages (< 0.05 ML) on O/Pt(111) the only reaction products were CO2, H2O and D2O, whereas at saturation CO, H2O, D2O and H2 were observed. The decomposed amount did not saturate at or before the onset of molecular methanol desorption, but increeased monotonically until saturation of the first layer. No oxygen exchange was observed between CH3OD and preadsorbed 18O. A decomposition mechanism involving methoxy and hydroxyl type species is proposed. Methanol coverages as low as 0.002 ML could be detected with SIMS. The CH3+ ion was the most intense ion in the positive SIMS spectrum of both methanol and methoxy. Larger ion clusters such as (CH3OD)n+ (n = 2, 3) developed successively at specific multilayer coverages. At low coverages on O/Pt(111), methoxy formation occurs above 125 K and its decomposition becomes detectable above 150 K during temperature programming. In the isothermal mode, the SIMS CH3+ ion was used to follow the kinetics. Over the temperature range 120–145 K, the second order Arrhenius rate parameters for methoxy formation are E = 5.5±0.7 kcal/mol and A = 1.5×10−7±0.6 cm2/s·molecule for an initial methanol coverage of 0.05 ML. Methoxy decomposition was studied in the temperature range 150–165 K and at an initial coverage of 0.015 ML. The first order kinetic parameters, E = 11.4±0.5 kcal/mol and A = 5.3×1013±1 s−1 were derived. Advantages and limitations of using SIMS as a tool for kinetic studies are discussed.  相似文献   

15.
Thermal desorption of bromine and iodine from an ionizer surface made of cold pressed and sintered LaB6 powder has been studien in the temperature interval 800–1300°C. A new technique, where the extraction field is accelerating only during short intervals, has been developed to monitor separately the neutral desorption of readily ionized elements. The technique has been combined with the modulated beam and the modulated voltage methods for measurements of residence times and ionization efficiencies. It has also been combined with the temperature programmed desorption method used for determination of the Arrhenius parameters of desorption. The following values were obtained for l? and l0, the activation energies of ionic and neutral desorption, and for the corresponding pre-exponential factors C and D (D = 4C) for halogens): Bromine: l? = 3.8 eV, l0 = 4.3 eV, C = 2.0 × 1013 s?1; Iodine: l? = 3.4 eV, l0 = 3.7 eV, C = 1.1 × 1013 s?1. The ionization efficiencies measured at 1100°C, 0.95 for bromine and 0.7 for iodine, correspond well to what is given by the Saha-Langmuie equation using a work function of 2.7 eV. All measurements were performed with the number of adsorbed particles well below 1017 atoms/m2. For higher coverages l? was found to increase linearly by about 0.15 eV for an adsorption of 1018 atoms/m2.  相似文献   

16.
The interaction of O2, CO2, CO, C2H4 AND C2H4O with Ag(110) has been studied by low energy electron diffraction (LEED), temperature programmed desorption (TPD) and electron energy loss spectroscopy (EELS). For adsorbed oxygen the EELS and TPD signals are measured as a function of coverage (θ). Up to θ = 0.25 the EELS signal is proportional to coverage; above 0.25 evidence is found for dipole-dipole interaction as the EELS signal is no longer proportional to coverage. The TPD signal is not directly proportional to the oxygen coverage, which is explained by diffusion of part of the adsorbed oxygen into the bulk. Oxygen has been adsorbed both at pressures of less than 10-4 Pa in an ultrahigh vacuum chamber and at pressures up to 103 Pa in a preparation chamber. After desorption at 103 Pa a new type of weakly bound subsurface oxygen is identified, which can be transferred to the surface by heating the crystal to 470 K. CO2 is not adsorbed as such on clean silver at 300 K. However, it is adsorbed in the form of a carbonate ion if the surface is first exposed to oxygen. If the crystal is heated this complex decomposes into Oad and CO2 with an activation energy of 27 kcal/mol(1 kcal = 4.187 kJ). Up to an oxygen coverage of 0.25 one CO2 molecule is adsorbed per two oxygen atoms on the surface. At higher oxygen coverages the amount of CO2 adsorbed becomes smaller. CO readily reacts with Oad at room temperature to form CO2. This reaction has been used to measure the number of O atoms present on the surface at 300 K relative to the amount of CO2 that is adsorbed at 300 K by the formation of a carbonate ion. Weakly bound subsurface oxygen does not react with CO at 300 K. Adsorption of C2H4O at 110 K is promoted by the presence of atomic oxygen. The activation energy for desorption of C2H4O from clean silver is ~ 9 kcal/mol, whereas on the oxygen-precovered surface two states are found with activation energies of 8.5 and 12.5 kcal/mol. The results are discussed in terms of the mechanism of ethylene epoxidation over unpromoted and unmoderated silver.  相似文献   

17.
《Surface science》1986,177(1):121-138
The electronic properties of clean and partly oxidized Pt3Ti(111) surfaces have been studied utilizing carbon monoxide both as a probe and as a reducing agent. Vibrational frequencies and desorption profiles of chemisorbed CO as well as ion scattering and angular resolved X-ray photoelectron spectroscopy (XPS) suggest that the first atomic layer of annealed Pt3Ti(111) is quasi-pure platinum. Scarcely any (θ ≈ 0.01) dissociation of CO was observed. Minor shifts of vibrational frequencies and desorption temperatures compared to Pt(111) and a p(2 × 2) “reconstruction” of the clean surface reveal some influence of the bulk. Auger spectroscopy, XPS, and ion scattering all show an increased titanium signal as a result of oxidation. Surface bound atomic oxygen gives a vibrational band around 650 cm−1 which coincides with infrared absorption spectra of TiO2. Flashing with CO shifts the band to 500 cm−1. Correlated with this shift we observe (i) CO2 desorption at a temperature well above that observed for Pt(111)/O, (ii) an altered Ti XPS signal, and (iii) a reduced oxygen concentration. Subsequently adsorbed CO molecules vibrate at the same frequencies as on the bare surface, give the same c(4 × 2) LEED pattern, and desorb at the same temperatures but with reduced intensity, in all proving that the surface oxide only acts as a site-blocker with respect to the metal surface. Our current understanding of these observations is that oxygen creates “islands of TiO2”, segregated to the surface but with no electronic influence on remaining areas of the platinum enriched metal surface. The hexacoordinated Ti4+ ions on the surface of these islands are reduced by CO to pentacoordinated Ti3+ species. The vibrational shift, 650 to 500 cm−1, can be understood by the dipole active bands of a triatomic O−Ti4+ −O vibrator compared to a diatomic Ti3+−O vibrator.  相似文献   

18.
The adsorption of water on a RuO2(1 1 0) surface was studied by using high-resolution electron energy loss spectroscopy (HREELS) and thermal desorption spectroscopy (TDS). The first thermal desorption peak observed between 350 and 425 K is attributed to molecular water adsorbed on fivefold coordinated Rucus sites. Higher coverages of water give rise to TDS peaks between 190 and 160 K, which we attribute to water in the second layer bound to bridge oxygen, and multilayers, respectively. HREELS shows that H2O chemisorbs on Rucus sites through oxygen inducing a slight red shift of the vibrational frequency of Obridge atoms. Molecular adsorption is also confirmed by the presence of both the scissor and the libration modes showing the expected isotopic shift for D2O. The water adsorbed on the Rucus sites also forms hydrogen bonds with the bridge oxygen indicated by the broad intensity at the lower frequency side of the O-H stretch mode. HREELS and TDS results suggest that on the perfect RuO2(1 1 0) surface water dissociation is almost negligible.  相似文献   

19.
The chemisorption of both CO and O2 on a clean tungsten ribbon has been studied using an ultrahigh vacuum X-ray photoelectron spectrometer. For CO, the energy and intensity of photoemission from O(1s) and C(1s) core levels have been studied for various adsorption temperatures.At adsorption temperatures of ~100 K., the “virgin”-CO state was the dominant adsorbed species. Conversion of this state to more strongly-bound β-CO is observed upon heating the adsorbed layer to ~320K. Thermal desorption of CO at 300?T?640 K causes sequential loss of α1-CO and α2-CO as judged by the disappearance of O(1s) and C(1s) photoelectron peaks characteristic of these states.Oxygen adsorption at 300K gives a single main O(ls) peak at all coverages, although at high oxygen coverages there exist small auxiliary peaks at ~2eV lower kinetic energy. The photoelectron C(1s) and O(1s) binding energies observed for these adsorbed species are all lower than for gaseous molecules containing C and O atoms. For CO adsorption states there is a systematic decrease in photoelectron binding energy as the strength of adsorption increases. These observations are in general accord with expectations based on electronic relaxation effects in condensed materials.  相似文献   

20.
This paper reports on a study of the electron-stimulated desorption of negative oxygen ions from the O/Ru surface, which represents an additional factor responsible for the destruction of the protective oxide layer of the mirrors used in ultraviolet lithography. The cross section of degradation of the O/Ru layer due to the electron-stimulated desorption of the O+ and O ions and the O atoms has been found to be 1.6 × 10−19 cm2. A comparison of the dependences of the electron-stimulated desorption yield of O+ and O ions on the incident electron energy E with the ionization cross section of the adsorbate core level σ O2s (E) has revealed that the ionization of the O 2s level is the main channel of the electron-stimulated desorption of O ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号