首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The growth mechanism, structure and thermal stability of monolayer and ultrathin Pd films formed by vapor deposition on Mo(100) were studied using AES, LEED, and TPD. Pd film growth at 150 K is described well by a Frank-van der Merwe (FM) or layer-by-layer growth mechanism with a small amount of layer disorder and/or non-ideal layering. The Pd monolayer is pseudomorphic with the Mo(100) substrate lattice as shown by LEED. Pd films deposited on Mo(100) at 450 and 600 K grow by forming three-dimensional (3D) islands on top of an initially formed Pd monolayer, i.e., a Stranski-Krastanov growth mode. Alloying could also explain the AES curves at these temperatures. Thermal desorption of Pd from multilayer films begins at 1250 K with an activation energy of 100 kcal/mol. This is 7 kcal/mol higher than the bulk sublimation energy of palladium due to interaction with the molybdenum substrate and was observed for films as thick as 20 layers. Pd desorption is kinetically limited by decomposition of a Pd-Mo alloy and/or diffusion of Pd from the subsurface layers of Mo to the surface. Annealing studies show that the Pd monolayer is stable to 1200 K, but that agglomeration of Pd into 3D islands and possibly alloy formation occurs upon heating thicker films above 400 K.  相似文献   

2.
The interaction of ultrathin films of Ni and Pd with W(110) has been examined using X-ray photoelectron spectroscopy (XPS) and the effects of annealing temperature and adsorbate coverage (film thickness) are investigated. The XPS data show that the atoms in a monolayer of Pd or Ni supported on W(110) are electronically perturbed with respect to the surface atoms of Pd(100) and Ni(100). The magnitude of the electronic perturbations is larger for Pd than for Ni adatoms. Our results indicate that the difference in Pd(3d5/2) XPS binding energies between a pseudomorphic monolayer of Pd on W(110) and the surface atoms of Pd(100) correlates with the variations observed for the desorption temperature of CO (i.e., the strength of the Pd---CO bond) on these surfaces. A similar correlation is seen for the Ni(2p3/2) XPS binding energies of Ni/W(110) and Ni(100) and the CO desorption temperatures from the surfaces. The shifts in XPS binding energies and CO desorption temperatures can be explained in terms of: (1) variations that occur in the Ni---Ni and Pd---Pd interactions when Ni and Pd adopt the lattice parameters of W(110) in a pseudomorphic adlayer; and (2) transfer of electron density from the metal overlayer to the W(110) substrate upon adsorption. Measurements of the Pd(3d5/2) XP binding energy of Pd/W(110) as a function of film thickness indicate that the Pd---W interaction affects the electronic properties of several layers of Pd atoms.  相似文献   

3.
The yield and energy distributions of lithium atoms upon electron-stimulated desorption from lithium layers adsorbed on the molybdenum surface coated with an oxygen monolayer have been measured as functions of the impact electron energy and lithium coverage. The measurements are performed using the time-of-flight technique and a surface ionization detector. The threshold of the electron-stimulated desorption of lithium atoms is equal to 25 eV, which is close to the ionization energy of the O 2s level. Above a threshold of 25 eV, the yield of lithium atoms linearly increases with an increase in the lithium coverage. In the coverage range from 0 to 0.45, an additional threshold is observed at an energy of 55 eV. This threshold can be associated with the ionization energy of the Li 1s level. At the electron energies above a threshold of 55 eV, as the coverage increases, the yield of lithium atoms passes through a maximum at a coverage of about 0.1. Additional thresholds for the electron-stimulated desorption of the lithium atoms are observed at electron energies of 40 and 70 eV for the coverages larger than 0.6 and 0.75, respectively. These thresholds correlate with the ionization energies of the Mo 4s and Mo 4p levels. Relatively broad peaks in the range of these thresholds indicate the resonance excitation of the bond and can be explained by the excitation of electrons toward the band of free states above the Fermi level. The mean kinetic energy of the lithium atoms is equal to several tenths of an electronvolt. At electron energies less than 55 eV, the energy distributions of lithium atoms involve one peak with a maximum at about 0.18 eV. For the lithium coverages less than 0.45 and electron energies higher than 55 eV, the second peak with a maximum at 0.25 eV appears in the energy distributions of the lithium atoms. The results obtained can be interpreted in the framework of the Auger-stimulated desorption model, in which the adsorbed lithium ions are neutralized after filling holes inside inner shells of the substrate and lithium atoms.  相似文献   

4.
This paper reports on a continuation of the investigation of electron-stimulated Cs-atom desorption from a tungsten surface on which cesium and gold films had been adsorbed at T = 300 K. Earlier studies revealed that Cs atoms start to desorb only after more than one monolayer of gold and more than one monolayer of cesium had been deposited on the tungsten surface. In this case, a coating consisting of a gold adlayer on tungsten, a CsAu compound possessing semiconducting properties, and a cesium monolayer capping CsAu (Cs/CsAu/Au/W) is formed on the tungsten surface at 300 K. The yield of atoms from this system exhibits a resonant dependence on the incident electron energy E e , with an appearance threshold of 57 eV and a maximum at 64 eV. In this case, Cs atoms desorb in two channels, with one of them involving Cs desorption out of the cesium monolayer, and the other, from the CsAu monolayer. The Cs yield at E e = 64 eV has been investigated in both desorption channels, with an additional cesium coating deposited on the already formed Cs/CsAu/Au/W layered system, as well as of the effect annealing produces on the yield and energy distributions of Cs atoms. It has been demonstrated that Cs atoms evaporated at 300 K on a layered coating with a cesium monolayer atop the CsAu layer on tungsten capped with a gold adlayer, rather than reflected from the cesium monolayer or adsorbing on it, penetrate through the cesium monolayer into the bulk of CsAu even with one CsAu layer present. The desorption yield does not vary with increasing cesium concentration at 300 K, but falls off gradually at 160 K. Annealing within the temperature range 320 K ≤ T H ≤ 400 K destroys the cesium monolayer and the one-layer CsAu coating, but the multilayer CsAu compound does not break up in this temperature range even after evaporation of the cesium monolayer. It is shown that Cs atoms escape from the multilayer CsAu compound primarily out of the top CsAu layer.  相似文献   

5.
Epitaxial layers of copper were formed on Pt(111) and Pt(553) single crystal surfaces by condensation of copper atoms from the vapor. Surface alloys were formed by diffusing the copper atoms into the platinum substrate at temperatures above 550 K. The activation energy for this process was found to be ~ 120 kJmol. These Pt/Cu surfaces were characterized by LEED, AES, and TDS of CO. The copper grows in islands on the Pt(111) surface and one monolayer is completed before another begins. There is an apparent repulsive interaction between the copper atoms and the step sites of the Pt(553) surface which causes a second layer of copper to begin forming before the first layer is complete. Epitaxial copper atoms block CO adsorption sites on the platinum surface without affecting the CO desorption energy. When the copper is alloyed with the platinum however, the energy of desorption of CO from the platinum was reduced by as much as 20 kJmol. This reduction in the desorption energy suggests an electronic modification that weakens the Pt-CO bond.  相似文献   

6.
This paper reports on the first measurement of the yield and energy distributions of sodium atoms in electron-stimulated desorption at T = 160 K from sodium layers adsorbed on tungsten with a gold film atop. The Na atom yield has a resonant pattern with an appearance threshold of 30 eV, which can be attributed to exciton excitation in the Na 2p level. The Na yield is associated with the formation of a semiconducting Na x Au y film at T ∼ 300 K and sodium and gold coverages in excess of one monolayer. Sodium atoms are desorbed through Auger neutralization of Na2+ ions in their reverse motion toward the surface and is limited by the resonant ionization of Na atoms as they pass through the adsorbed layer of Na+ ions. The energy distributions of Na atoms are bell shaped with a maximum at about 0.56 eV.  相似文献   

7.
《Surface science》1986,167(1):27-38
The initial stage of adsorption of Pd on a Si(111)7 × 7 surface has been studied by means of Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and surface work-function change. For Pd deposition at room temperature (RT) the Si(LVV) Auger signal intensity decays in a broken linear line. The structure factor, defined as the intensity ratio of the subpeak to the main one in Si(LVV) Auger spectra, increases up to a maximum around one monolayer coverages. In EELS spectra two peaks, characteristics of Pd, appear at the completion of the first Pd layer. Pd atoms deposited on Si(111) at RT form initially flat layers of a few monolayers height without mixing with substrate Si atoms. For Pd deposition at a moderately high temperature (MT) of about 300°C, however, the structure factor for Si(LVV) Auger spectra does not change. EELS peaks, characteristic of Si substrate, remain clearly even beyond one monolayer coverage. Pd atoms deposited at MT are unstable and easily diffuse into the bulk. We present evidences to support the “screening” model for the bond-breaking mechanism at the Pd/Si interface.  相似文献   

8.
The growth of Ge thin films on the surface of a textured predominantly (100)-oriented tungsten ribbon is studied by thermal desorption spectrometry at different substrate temperatures over a wide range of coverages. The mechanism of growth of the Ge films at T = 300 K is similar to a layer-by-layer mechanism. For T > 300 K, the films grow through the Stranski-Krastanov mechanism, according to which the completion of the monolayer coverage is followed by the formation of three-dimensional crystallites; as a result, the desorption kinetics changes. For small coverages (i.e., in the absence of lateral interactions), the activation energy of Ge desorption from W(100) is E = 4.9 ± 0.2 eV. In a monolayer, this activation energy decreases to E = 3.9 ± 0.2 eV due to the repulsive lateral interactions. The energy of pairwise lateral interactions is determined to be ω = 0.3 eV.  相似文献   

9.
陈东运  高明  李拥华  徐飞  赵磊  马忠权 《物理学报》2019,68(10):103101-103101
采用基于密度泛函理论的第一性原理计算方法,通过模拟MoO_3/Si界面反应,研究了MoO_x薄膜沉积中原子、分子的吸附、扩散和成核过程,从原子尺度阐明了缓冲层钼掺杂非晶氧化硅(a-SiO_x(Mo))物质的形成和机理.结果表明,在1500 K温度下, MoO_3/Si界面区由Mo, O, Si三种原子混合,可形成新的稳定的物相.热蒸发沉积初始时, MoO_3中的两个O原子和Si成键更加稳定,同时伴随着电子从Si到O的转移,钝化了硅表面的悬挂键. MoO_3中氧空位的形成能小于SiO_2中氧空位的形成能,使得O原子容易从MoO_3中迁移至Si衬底一侧,从而形成氧化硅层;替位缺陷中, Si替位MoO_3中的Mo的形成能远远大于Mo替位SiO_2中的Si的形成能,使得Mo容易掺杂进入氧化硅中.因此,在晶硅(100)面上沉积MoO_3薄膜时, MoO_3中的O原子先与Si成键,形成氧化硅层,随后部分Mo原子替位氧化硅中的Si原子,最终形成含有钼掺杂的非晶氧化硅层.  相似文献   

10.
The growth process of silver on a Si(111) substrate has been studied in detail by low-energy ion-scattering spectroscopy (ISS) combined with LEED-AES. Neon ions of 500 eV were used as probe ions of ISS. The ISS experiments have revealed that the growth at room temperature and at high temperature are quite different from each other even in the submonolayer coverage range. The following growth models have been proposed for the respective temperatures. At room temperature, the deposited Ag forms a two-dimensional (2D) island at around 2/3 monolayer (ML) coverage, where the Ag atoms are packed commensurately with the Si(111)1 substrate. One third of the substrate Si surface remains uncovered there. Then it starts to develop into Ag crystal, and at a few ML coverage a 3D island of bulk Ag crystal grows directly on the substrate. An intermediate layer, which covers uniformly the whole surface before the growth of Ag crystal, does not exist. At high temperatures (>~200°C), the well-known Si(111)√3-Ag layer is formed as an intermediate layer, which consists of 2/3 ML of Ag atoms and covers the whole surface uniformly. These Ag atoms are embedded in the first double layer of the Si substrate. It is concluded that the formation of the √3 structure needs relatively high activation energy which may originate from the large displacement of Si atoms owing to the embedment of the Ag atoms, and does not proceed below about 200°C. The most stable state of the Ag atoms on the outermost Si layer is in the shape of an island, both for the Si(111) surface and for the Si(111)√3-Ag surface.  相似文献   

11.
We have studied the changes in the photoelectron spectra of platinum (for photon energies of 21.2 and ? 10.2 eV), in conjunction with thermal desorption experiments, for coverages of carbon monoxide and oxygen of up to ~0.25 monolayer (saturation coverage at room temperature). Based on a comparison of the photoemission and thermal desorption results, we suggest that the less tightly bound of the two adsorption states observed in the thermal desorption data is due to adsorbate-adsorbate interactions. We further suggest that a relatively delocalized chemisorption bond plays an important role in this interaction.  相似文献   

12.
This paper addresses a hydrogen outgassing mechanism in titanium materials with extremely low outgassing property by investigating the distribution of hydrogen atoms concentration in depth below the surface, and the activation energy for desorption of dissolved hydrogen atoms into the boundary region between the surface oxide layer and the bulk titanium and that of adsorbed hydrogen atoms on the surface. The distribution of hydrogen atoms concentration in depth below the surface was analyzed by a time-of-flight secondary ion mass spectrometry (TOF-SIMS). The activation energy for desorption of dissolved hydrogen atoms was estimated by the thermal desorption spectroscopy (TDS) measurement with various heating rates. The activation energy for desorption of adsorbed hydrogen atoms was estimated by the temperature dependence of the outgassing rate in titanium material. In the titanium material, hydrogen atoms show maximum concentration at the boundary between the surface oxide layer and the bulk titanium. Concentration of hydrogen atoms decreases rapidly at the surface oxide layer, while it decreases slowly in the deep region below the surface layer-bulk boundary by the vacuum evacuation without/with the baking process. The activation energy for desorption of 1.02 eV of dissolved hydrogen atoms into the surface layer-bulk boundary is about three times as large as that of 0.38 eV of the adsorbed hydrogen atoms on the surface. These results suggest that the hydrogen outgassing mechanism in the titanium material is composed the follows processes, i.e. the slow hydrogen atoms diffusion at the surface layer-bulk boundary, quick hydrogen atoms diffusion at the surface oxide layer and rapid desorption of adsorbed hydrogen atoms on the surface. This outgassing mechanism gives very low hydrogen concentration near the surface, which results in the extremely low outgassing rate in titanium materials.  相似文献   

13.
Growth of thin Ti films on (100)W and the kinetics of their oxidation are studied using thermal-desorption spectroscopy and Auger electron spectroscopy. Titanium films grow nearly layer by layer on the (100)W face at room temperature. The activation energy for desorption of Ti atoms decreases from 5.2 eV for coverage θ=0.1 to 4.9 eV in a multilayer film. Oxidation of a thin (θ=6) titanium film starts with dissolution of oxygen atoms in its bulk to the limiting concentration for a given temperature, after which the film oxidizes to TiO, with the TiO2 oxide starting to grow when exposure of the film to oxygen is prolonged. The thermal desorption of oxides follows zero-order kinetics and is characterized by desorption activation energies of 5.1 (TiO) and 5.9 eV (TiO2).  相似文献   

14.
Annealing at elevated temperatures (1000–1600 K) of at least 10 ML thick Pd films deposited on Nb(0 0 1) has been found to result in a substrate capped by a pseudomorphic monolayer of Pd. This 1 ML thick Pd cap layer was characterised with a combination of UPS and DFT-calculations. UPS, RHEED and AES show that this cap layer protects the Nb(0 0 1) surface against (oxygen) contamination, which is a well known problem of Nb substrates. AES sputter profiling indicates that a major part of the Pd material in excess of the pseudomorphic monolayer is dissolved in the Nb lattice just below the surface. XPD shows that these dissolved Pd atoms occupy substitutional sites in the substrate. The analysis of the XPS-anisotropy also provides some information about the concentration and positions of the Pd and Nb atoms in the alloyed samples.  相似文献   

15.
The adsorption and desorption kinetics of silver on clean polycrystalline tungsten were investigated with a mass-spectrometric technique. The deposition up to about 2 monolayers occurred without two-dimensional phase transformation. The thermal accommodation coefficient was found to be unity. The desorption energy and frequency factor for different coverages were determined. The bonding of silver atoms in the first monolayer was found to be localized. Additionally, thermal desorption experiments with linear heating rate were carried out.  相似文献   

16.
17.
N. Saliba  D. H. Parker  B. E. Koel   《Surface science》1998,410(2-3):270-282
Atomic oxygen coverages of up to 1.2 ML may be cleanly adsorbed on the Au(111) surface by exposure to O3 at 300 K. We have studied the adsorbed oxygen layer by AES, XPS, HREELS, LEED, work function measurements and TPD. A plot of the O(519 eV)/Au(239 eV) AES ratio versus coverage is nearly linear, but a small change in slope occurs at ΘO=0.9 ML. LEED observations show no ordered superlattice for the oxygen overlayer for any coverage studied. One-dimensional ordering of the adlayer occurs at low coverages, and disordering of the substrate occurs at higher coverages. Adsorption of 1.0 ML of oxygen on Au(111) increases the work function by +0.80 eV, indicating electron transfer from the Au substrate into an oxygen adlayer. The O(1s) peak in XPS has a binding energy of 530.1 eV, showing only a small (0.3 eV) shift to a higher binding energy with increasing oxygen coverage. No shift was detected for the Au 4f7/2 peak due to adsorption. All oxygen is removed by thermal desorption of O2 to leave a clean Au(111) surface after heating to 600 K. TPD spectra initially show an O2 desorption peak at 520 K at low ΘO, and the peak shifts to higher temperatures for increasing oxygen coverages up to ΘO=0.22 ML. Above this coverage, the peak shifts very slightly to higher temperatures, resulting in a peak at 550 K at ΘO=1.2 ML. Analysis of the TPD data indicates that the desorption of O2 from Au(111) can be described by first-order kinetics with an activation energy for O2 desorption of 30 kcal mol−1 near saturation coverage. We estimate a value for the Au–O bond dissociation energy D(Au–O) to be 56 kcal mol−1.  相似文献   

18.
The kinetics of europium adsorption on a W(100) face with various degrees of oxidation were studied by thermal desorption and Auger electron spectroscopy. The spectrum of Eu atoms desorbed thermally from the W(100) face consists of three successively filling desorption phases whose desorption activation energy decreases from 3 to 2.1 eV with an increase in the surface coverage. The thermodesorption spectrum of Eu atoms from the W(100) face coated with a monatomic oxygen film contains five successively forming desorption phases, with the desorption activation energy increasing to 4 eV for the high-temperature phase. The oxidized W is reduced by europium, and the desorption of the W oxides is replaced by that of EuO. After a monolayer film has formed, the Eu film adsorbed on tungsten starts to grow in the form of three-dimensional crystallites. As the degree of W oxidation increases, the Eu film becomes less nonuniform, until a solid Eu film starts to grow on bulk W oxides and completely screens the tungsten Auger signal.  相似文献   

19.
朱玥  李永成  王福合 《物理学报》2016,65(5):56801-056801
本文利用基于密度泛函理论的第一性原理分别研究了MgH2(001)表面H原子扩散形成H2分子释放出去的可能路径及金属Li原子掺杂对其影响. 研究结果表明: 干净MgH2(001)表面第一层释放H原子形成H2分子有两种可能路径, 其释放能垒分别为2.29和2.50 eV; 当将Li原子替代Mg原子时, 两种H原子扩散释放路径的能垒分别降到了0.31和0.22 eV, 由此表明Li原子掺杂使MgH2(001)表面H原子扩散形成H2释放更加容易.  相似文献   

20.
The hydrogen storage behavior of Sc-decorated WS_2 monolayer and WS_2 nanoribbons is systematically studied by using first principles calculations based on the density functional theory.The present results indicate that an Scdecorated WS_2 monolayer is not suitable for storing hydrogen due to the weak interaction between the monolayer WS_2 sheet and the Sc atoms.It is found that both the hybridization mechanism and the Coulomb attraction make the Sc atoms stably adsorb on the edges of WS_2 nanoribbons without ciustering.The 2SC/WS_2NRS system can adsorb at most eight H_2 molecules with average adsorption energy of 0.20eV/H_2.The resuits show that the desorption of H_2 is possible by lowering the pressure or by increasing the temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号