首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first CdSe/ZnS quantum dot photoluminescence lifetime-based pH nanosensor has been developed. The average lifetime of mercaptopropionic acid-capped QD nanosensors showed a linear response in the pH range of 5.2-6.9. These nanosensors have been satisfactorily applied for pH estimation in simulated intracellular media, with high sensitivity and high selectivity toward most of the intracellular components.  相似文献   

2.
Ruedas-Rama MJ  Hall EA 《The Analyst》2008,133(11):1556-1566
In this work, the first chloride ion sensor based on QD-lucigenin nanoparticles is reported. The mechanism uses the ability of semiconductor QDs to engage in short range exchange processes, leading to fluorescence changes. An acridinium dication (lucigenin) which is an electron acceptor, was self-assembled on the surface of negative charged QDs (capped with mercaptopropionic acid). Mutual quenching of the lucigenin and QD were observed. From a sphere of action, Perrin-type model, exchange was estimated to occur over a range of the order of 2 nm. The possibility of spin-orbit coupling (SOC) or electron transfer between the QD and the lucigenin dication (Luc(2+)) is discussed. The radical cation Luc(+*) was not identified, but electron transfer from the QD conduction band to the Luc(2+), then electron transfer back, from the Luc(+*) to the QD valence band, could lead to mutual quenching, without build up of Luc(+*) . SOC between the QD and lucigenin, with or without charge transfer being involved, can also account for the results obtained. Lucigenin is also a chloride-sensitive indicator dye, with a sensing mechanism based on SOC. In the QD-MPA-lucigenin conjugate luminescence is restored by adding chloride ion. Thus, the presence of chloride is transduced into an enhancement of the luminescence of QDs. Using this operating principle, a chloride ion sensor based on CdSe-ZnS core-shell QD nanoparticles, showed a very good linearity in the range 1-250 mM, with a detection limit 0.29 mM and a RSD of 2.5% (n = 10). In a study of interferences, the chloride sensitive QDs showed good selectivity to most of the other anions tested. The versatility of the system was also demonstrated in terms of fluorescent emission wavelength, which could be selected across a wide range through choice of QDs. Examples are shown for lambda(max) = 500, 540 and 620 nm. The results from samples mimicking physiological conditions suggested very good applicability in the determination of chloride ion in physiological samples.  相似文献   

3.
Semiconductor nanocrystals, namely, quantum dots (QDs), present a set of unique photoluminescence properties, which has led to increased interest in using them as advantageous alternatives to conventional organic dyes. Many applications of QDs involve surface modification to enhance the solubility or biocompatibility of the QDs. One of the least exploited properties of QDs is the very long photoluminescence lifetime that usually has complex kinetics owing to the effect of quantum confinement. Herein, we describe the effect of different surface modifications on the photoluminescence decay kinetics of QDs. The different surface modifications were carefully chosen to provide lipophilic or water‐soluble QDs with either positive or negative surface net charges. We also survey the effect on the QD lifetime of several ligands that interact with the QD surface, such as organic chromophores or fluorescent proteins. The results obtained demonstrate that time‐resolved fluorescence is a useful tool for QD‐based sensing to set the basis for the development of time‐resolved‐based nanosensors.  相似文献   

4.
Development of quantum dot (QD) based device components requires controlled integration of QDs into different photonic and electronic materials. In this regard, introduction of methods for regular arrangement of QDs and investigation of properties of QD-based assemblies are important. In the current work we report (1) controlled conjugation of CdSe-ZnS QDs to sidewall-functionalized single-walled carbon nanotube (SWCNT) templates (2) and the effect of conjugation of QDs to SWCNT on the photoluminescence (PL) properties of QDs. We identified that PL intensity and lifetime of QDs are considerably reduced after conjugation to SWCNT. The origin of the quenching of the PL intensity and lifetime was discussed in terms of F?rster resonance energy transfer (FRET). FRET involves nonradiative transfer of energy from a photoexcited QD (energy donor) to a nearby SWCNT (energy acceptor) in the ground state. This was examined by varying the density of QDs on SWCNT and conjugating smaller and bigger QDs to the same SWCNT. We estimated the FRET efficiency in QD-SWCNT conjugates from the quenching of the PL intensity and lifetime and identified that FRET is independent of the density and type of QDs on SWCNT but inherent to QD-SWCNT conjugates.  相似文献   

5.
Reported are quantitative studies of the energy transfer from water-soluble CdSe/ZnS and CdSeS/ZnS core/shell quantum dots (QDs) to the Cr(III) complexes trans-Cr(N(4))(X)(2)(+) (N(4) is a tetraazamacrocycle ligand, X(-) is CN(-), Cl(-), or ONO(-)) in aqueous solution. Variation of N(4), of X(-), and of the QD size and composition allows one to probe the relationship between the emission/absorption overlap integral parameter and the efficiency of the quenching of the QD photoluminescence (PL) by the chromium(III) complexes. Steady-state studies of the QD PL in the presence of different concentrations of trans-Cr(N(4))(X)(2)(+) indicate a clear correlation between quenching efficiency and the overlap integral largely consistent with the predicted behavior of a F?rster resonance energy transfer (FRET)-type mechanism. PL lifetimes show analogous correlations, and these results demonstrate that spectral overlap is an important consideration when designing supramolecular systems that incorporate QDs as photosensitizers. In the latter context, we extend earlier studies demonstrating that the water-soluble CdSe/ZnS and CdSeS/ZnS QDs photosensitize nitric oxide release from the trans-Cr(cyclam)(ONO)(2)(+) cation (cyclam = 1,4,8,11-tetraazacyclotetradecane) and report the efficiency (quantum yield) for this process. An improved synthesis of ternary CdSeS core/shell QDs is also described.  相似文献   

6.
A method for synthesizing multidentate thiol ligands on fused silica surfaces (e.g., optical fibers) was developed for the immobilization of CdSe/ZnS quantum dots (QDs) capped with hydrophilic or hydrophobic ligands. This work was motivated by the poor stability of QDs immobilized via monodentate thiol ligands and the need for stable immobilization strategies in the development of sensor technologies based on QDs. Multi-dentate immobilization was able to withstand washing protocols, and surface ligand exchange occurred via self-assembly through the zinc-metal affinity interaction. Atomic force and scanning electron microscopy images suggested that the QDs were immobilized at high density, approximately 2-4 x 10 (13) cm (-2). It was possible to immobilize one, two, or three colors of QD. Upon immobilization, 1-2 nm bathochromic shifts in the PL spectra were observed. This was attributed to both ligand exchange and the change in local environment. The change in environment was accompanied by a decrease in PL lifetime. Self-assembly of immobilized QD-oligonucleotide and QD-avidin conjugates was also demonstrated. These conjugates were able to hybridize with complementary oligonucleotide and bind biotin, respectively. This versatile immobilization chemistry is an important step in the development of surface-based QD nanosensors. Such technology requires QDs to be immobilized such that they remain accessible to target molecules in solution.  相似文献   

7.
Described is the photoluminescence (PL) of water-soluble CdSe/ZnS core/shell quantum dots (QDs) as perturbed by salts of the chromium(III) complexes trans-Cr(cyclam)Cl2+ (1), trans-Cr(cyclam)(ONO)2+ (2), and trans-Cr(cyclam)(CN)2+ (3) (cyclam = 1,4,8,11-tetraazacyclo-tetradecane). The purpose is to probe the characteristics of such QDs as antennae for photosensitized release of bioactive agents (in the present case, the bioregulatory molecule NO) from transition metal centers. Addition of 1 or 2 to a QD solution results in concentration-dependent quenching of the band edge emission, but 3 has a minimal effect. Added KCl strongly attenuates the quenching by 1, and this suggests that the Cr(III) cations and the QDs form electrostatic assemblies via ion pairing on the negatively charged QD surfaces. Quenching by 2, a known photochemical NO precursor, was accompanied by photosensitized NO release. All three, however, do quench the broad red emission ( approximately 650-850 nm) attributed to radiative decay of surface trapped carriers. The effect of various concentrations of 1 on time-resolved PL and absorbance were explored using ultrafast spectroscopic methods. These observations are interpreted in terms of the F?rster resonance energy-transfer mechanism for quenching of the band edge PL by multiple units of 1 or 2 at the QD surface, whereas quenching of the low-energy trap emission occurs via a charge-transfer pathway.  相似文献   

8.
以偶氮二异丁腈(AIBN)为引发剂, 通过自由基聚合制备了1-甲基-3-(2-甲基丙烯酰乙基)-咪唑氯离子液体和苯乙烯的无规共聚物P(MMEIM+Cl--co-St). 用红外光谱、核磁共振氢谱和凝胶渗透色谱表征了共聚物的结构. 共聚物的氯仿溶液与巯基乙酸稳定的CdTe量子点水溶液混合, 通过静电相互作用复合组装, 得到澄清透明且稳定的CdTe/P(MMEIM+Cl--co-St)纳米复合物的氯仿溶液. 复合物的紫外吸收光谱、荧光发射光谱和透射电子显微镜的表征结果表明, 量子点均匀分散于共聚物中, 无团聚, 且保持了量子点的荧光性能.  相似文献   

9.
The photoluminescence of mercaptoacetic acid (MAA)-capped CdSe/ZnSe/ZnS semiconductor nanocrystal quantum dots (QDs) in SKOV-3 human ovarian cancer cells is pH-dependent, suggesting applications in which QDs serve as intracellular pH sensors. In both fixed and living cells the fluorescence intensity of intracellular MAA-capped QDs (MAA QDs) increases monotonically with increasing pH. The electrophoretic mobility of MAA QDs also increases with pH, indicating an association between surface charging and fluorescence emission. MAA dissociates from the ZnS outer shell at low pH, resulting in aggregation and loss of solubility, and this may also contribute to the MAA QD fluorescence changes observed in the intracellular environment.  相似文献   

10.
Novel fluorescent nanosensors, based on a naphthyridine receptor, have been developed for the detection of guanosine nucleotides, and both their sensitivity and selectivity to various nucleotides were evaluated. The nanosensors were constructed from polystyrene nanoparticles functionalized by (N-(7-((3-aminophenyl)ethynyl)-1,8-naphthyridin-2-yl)acetamide) via carbodiimide ester activation. We show that this naphthyridine nanosensor binds guanosine nucleotides preferentially over adenine, cytosine, and thymidine nucleotides. Upon interaction with nucleotides, the fluorescence of the nanosensor is gradually quenched yielding Stern–Volmer constants in the range of 2.1 to 35.9 mM−1. For all the studied quenchers, limits of detection (LOD) and tolerance levels for the nanosensors were also determined. The lowest (3σ) LOD was found for guanosine 3’,5’-cyclic monophosphate (cGMP) and it was as low as 150 ng/ml. In addition, we demonstrated that the spatial arrangement of bound analytes on the nanosensors’ surfaces is what is responsible for their selectivity to different guanosine nucleotides. We found a correlation between the changes of the fluorescence signal and the number of phosphate groups of a nucleotide. Results of molecular modeling and ζ-potential measurements confirm that the arrangement of analytes on the surface provides for the selectivity of the nanosensors. These fluorescent nanosensors have the potential to be applied in multi-analyte, array-based detection platforms, as well as in multiplexed microfluidic systems.  相似文献   

11.
A novel approach to tuning electrochemical rectification using 2D assemblies of quantum dots (QDs) is presented. Asymmetric enhancement of the oxidation and reduction currents in the presence of the Fe(CN)(6)(3-/4-) redox couple is observed upon adsorption of QDs at thiol-modified Au electrodes. The extent of the electrochemical rectification is dependent on the average QD size. A molecular blocking layer is generated by self-assembling 11-mercaptoundecanoic acid (MUA) and an ultrathin film of poly(diallyldimethylammonium chloride) (PDADMAC) on the electrode. The polycationic film allows the electrostatic adsorption of 3-mercaptopropionic acid (MPA)-stabilized CdTe QDs, generating 2D assemblies with approximately 0.4% coverage. The QD adsorption activates a fast charge transfer across the blocking layer in which the reduction process is more strongly enhanced than the oxidation reaction. The partial electrochemical rectification is rationalized in terms of the relative position of the valence (VB) and conduction band (CB) edges with respect to the redox Fermi energy (ε(redox)). Quantitative analysis of the exchange current density obtained from electrochemical impedance spectroscopy demonstrates that the enhancement of charge transport across the molecular barrier is strongly dependent on the position of the QD valence band edge relative to ε(redox). The average electron tunneling rate constant through the QD assemblies is estimated on the basis of the Gerischer model for electron transfer.  相似文献   

12.
QD-Au NP@silica mesoporous microspheres have been fabricated as a novel enzyme-mimic nanosensor. CdTe quantum dots (QDs) were loaded into the core, and Au nanoparticles (NPs) were encapsulated in the outer mesoporous shell. QDs and Au NPs were separated in the different space of the nanosensor, which prevent the potential energy or electron transfer process between QDs and Au NPs. As biomimetic catalyst, Au NPs in the mesoporous silica shell can catalytically oxidize glucose as glucose oxidase (GOx)-mimicking. The resultant hydrogen peroxide can quench the photoluminescence (PL) signal of QDs in the microsphere core. Therefore the nanosensor based on the decrease of the PL intensity of QDs was established for the glucose detection. The linear range for glucose was in the range of 5–200 μM with a detection limit (3σ) of 1.32 μM.  相似文献   

13.
Semiconductor quantum dots (QDs) are very important luminescent nanomaterials with a wide range of potential applications. Currently, QDs as labeling probes are broadly used in bioassays, including immunoassay, DNA hybridization, and bioimaging, due to their excellent physical and chemical properties, such as broad excitation spectra, narrow and size‐dependent emission profiles, long fluorescence life time, and good photostability. The characterization of QDs and their conjugates is crucial for their wide bioapplications. CE has become a powerful tool for the separation and characterization of QDs and their conjugates. In this review, some CE separation models of QDs are first introduced, mainly including CZE, CGE, MEKC, and ITP. And then, some key applications, such as the measurements of size, surface charge, and concentration of QDs and the characterization of QDs conjugates (e.g. QD–protein, QD–DNA, QD–small molecule), are also described. Finally, future perspectives are discussed.  相似文献   

14.
A new complex consisting of CdTe quantum dots (QDs) and glucose oxidase (GOx) has been facilely assembled to achieve considerably enhanced enzymatic activity and a wide active temperature range of GOx; these characteristics are attributed to the conformational changes of GOx during assembly. The obtained complex can be simultaneously used as a nanosensor for the detection of glucose with high sensitivity. A mechanism is put forward based on the fluorescence quenching of CdTe QDs, which is caused by the hydrogen peroxide (H2O2) that is produced from the GOx-catalyzed oxidation of glucose. When H2O2 gets to the surface of the CdTe QDs, the electron-transfer reaction happens immediately and H2O2 is reduced to O2, which lies in electron hole traps on CdTe QDs and can be used as a good acceptor, thus forming the nonfluorescent CdTe QDs anion. The produced O2 can further participate in the catalyzed reaction of GOx, forming a cyclic electron-transfer mechanism of glucose oxidation, which is favorable for the whole reaction system. The value of the Michaelis-Menton constant of GOx is estimated to be 0.45 mM L(-1), which shows the considerably enhanced enzymatic activity measured by far. In addition, the GOx enzyme conjugated on the CdTe QDs possesses better thermal stability at 20-80 degrees C and keeps the maximum activity in the wide range of 40-50 degrees C. Moreover, the simply assembled complex as a nanosensor can sensitively determine glucose in the wide concentration range from micro- to millimolar with the detection limit of 0.10 microM, which could be used for the direct detection of low levels of glucose in biological systems. Therefore, the established method could provide an approach for the assembly of CdTe QDs with other redox enzymes, to realize enhanced enzymatic activity, and to further the design of novel nanosensors applied in biological systems in the future.  相似文献   

15.
Chemically reduced bovine serum albumin (BSA) has been used to modify the surface of water-soluble CdTe quantum dots (QDs). It is demonstrated that the denatured BSA (dBSA) can be conjugated to the surface of CdTe QDs and thereby efficiently improve the chemical stability and the photoluminescence quantum yield (PL QY) of the QDs. It is inferred that a shell-like complex structure CdTe(x)(dBSA)(1-x) will form on the surface of the CdTe "core", resulting in the enhancement of PL intensity and the blue shift of the PL peak. This study of the effects of pH and dBSA concentration on optical properties of dBSA-coated QDs suggests that, at pH 6-9, the solution of dBSA-coated CdTe QDs can keep substantial stability and fluorescent brightness, whereas further increase of pH value leads to a dramatic decrease in PL QY and chemical stability. On the other hand, too high or too low initial dBSA concentration in the QD solution results in a decrease of PL QY for dBSA-coated CdTe QDs. This study provides a new approach of preparing stable water-soluble QDs with high PL QY and controllable luminescent colors for biological labeling applications.  相似文献   

16.
Appropriate design of nanosensors for optically selective, sensitive sensing systems is needed for naked-eye detection of pollutants for environmental cleanup of toxic heavy-metal ions. Mesostructured materials with two- or three-dimensional (2D or 3D) geometries and large particle morphologies show promise as probe carriers, and can therefore be used to reproducibly fabricate uniformly packed nanosensors. This is the first report on the effects of significant key properties of the mesostructured carriers, such as morphology, geometry, and pore shape, on the functionality of optical nanosensor designs. Such mesostructured sensors with superior physical characteristics can be used as components in sensing systems with excellent stability and sensitivity, and with rapid detection response. The nanosensor design can enhance the selectivity even at low concentrations of the pollutant target ions (nanomolar level). Among the nanosensors developed here, the large pore-surface grains of highly ordered 3D monoliths (HOM) exhibited a high adsorption capability of the Pyrogallol Red probe and high accessibility to analyte ion transport, leading to possible naked-eye detection of Sb(III) ions at concentrations as low as 10(-9) mol dm(-3) and at a wide detection range of 0.5 ppb to 3 ppm. A key finding in our study was that our mesostructured nanosensor designs retained highly efficient sensitivity without a significant increase in kinetic hindrance, despite the slight decrease of the specific activity of the electron acceptor/donor strength of the probe functional group after several regeneration/reuse cycles. The results, in general, indicate that large-scale reversibility of optical nanosensors is feasible in such metal-ion sensing systems.  相似文献   

17.
ABSTRACT

In this study, a quartz crystal microbalance (QCM) nanosensor was prepared to detect tryptophan. QCM nanosensor was prepared through the formation of tryptophan memories on the gold surface of QCM electrode using Methacryloylamidohistidine-Cu(II)-tryptophan ([MAH-Cu(II)]-tryptophan) pre-organised monomer system. The designed pre-organised monomer system was characterised by use of Fourier Transform Infrared (FTIR) and Atomic Force Microscope (AFM) was used to characterise the QCM nanosensors. After the characterisation studies, imprinted and non-imprinted sensors were connected to QCM system to determine the binding of the target molecule, selectivity and the detection of the amount of target molecule in real samples. The results showed that the imprinted QCM nanosensor had high selectivity for tryptophan.  相似文献   

18.
We have constructed a fluorescent nanosensor for dopamine (DA) and glutathione (GSH) in physiologically relevant concentrations. CdTe quantum dots (QDs) were coated with silica, and dopamine-quinone (formed by oxidation of DA) is captured on the surface of silica via dual interactions (hydrogen bonding and electrostatic interaction) and quenches the photoluminescence of the modified QDs by an electron transfer process. GSH, in being a strong reducing agent, can chemically reduce the dopamine-quinone on the QDs, and this results in recovered photoluminescence. There are linear relationships between the concentrations of dopamine and GSH respectively and the intensity of the photoluminescence intensity of the QDs both in the quenched and regenerated form, the ranges being 0.0005 to 0.1 mmol?L?1 for dopamine, and 0.1 to 10 mmol?L?1 for GSH. The method was applied to the determination of dopamine and GSH in human serum samples with satisfactory results.
Figure
We have constructed a fluorescent nanosensor for dopamine (DA) and glutathione in physiologically relevant concentrations. QDs were coated with silica, and dopamine-quinone (formed by oxidation of DA) is captured on the surface of silica via dual interactions and quenches the photoluminescence of the modified QDs by an electron transfer process. Glutathione, in being a strong reducing agent, can chemically reduce the dopamine-quinone on the QDs, and this results in recovered photoluminescence. The method was applied to the determination of dopamine and glutathione in human serum sample with satisfactory results  相似文献   

19.
Fei J  Wu K  Wang F  Hu S 《Talanta》2005,65(4):918-924
This paper describes glucose nanosensors based on the co-electrodeposition of a poly(vinylimidazole) complex of [Os(bpy)2Cl]+/2+ and glucose oxidase (GOD) on a low-noise carbon fiber nanoelectrodes (CFNE). The SEM image shows that the osmium redox polymer/enzyme composite film is uniform. The film modified CFNE exhibits the classical features of a kinetically fast redox couple bound to the electrode surface. A strong and stable electrocatalytic current is observed in the presence of glucose. Under the optimal experimental conditions, the nanosensor offers a highly sensitive and rapid response to glucose at an operating potential of 0.22 V. A wide linear dynamic rang of 0.01-15 mM range was achieved with a detection limit of 0.004 mM. Compared with the conventional gold electrode, the nanosensor possessed higher sensitivity and longer stability. Successful attempts were made in real time monitoring rabbit blood glucose levels.  相似文献   

20.
Kim YS  Jurng J 《The Analyst》2011,136(18):3720-3724
We developed a homogeneous fluorescence assay for multiplex detection based on the target induced conformational change of DNA aptamers. DNA aptamers were immobilized on quantum dots (QDs), and QDs conjugated ssDNA was adsorbed on the surface of gold nanoparticles (AuNPs) by electrostatic interaction between uncoiled ssDNA and the AuNPs. Subsequently the fluorescence of QDs was effectively quenched by the AuNPs due to fluorescence resonance energy transfer (FRET) of QDs to AuNPs. In the presence of targets, the QDs conjugated aptamers were detached from AuNPs by target induced conformational change of aptamers, consequently the fluorescence of the QDs was recovered proportional to the target concentration. In this study, three different QD/aptamer conjugates were used for multiplex detection of mercury ions, adenosine and potassium ions. In a control experiment, all of the three targets were simultaneously detected with high selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号