首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2 film for use as dye-sensitized solar cell was prepared using the TiO2 colloidal sols (unpeptized sol and peptized sol). The optical properties and photocurrent-voltage characteristics of the resultant films were investigated. The optical transmittance of TiO2 thin film prepared from the peptized colloidal sol was over 90%, while that of TiO2 film from the unpeptized sol was under 80%. The TiO2 photoelectrode prepared from the peptized colloidal sol showed low photoelectric conversion efficiency (eta), 1.30%, whereas the efficiency of photoelectrode from the unpeptized sol was 2.21%. The high optical transmittance and low conversion efficiency of TiO2 film from the peptized sol are discussed in terms of dense microstructure due to the drying nature of well-dispersed colloidal sol.  相似文献   

2.
A novel colloidal approach toward semiconductor/metal nanocomposites is presented. Organic-soluble anatase TiO(2) nanorods are used for the first time to stabilize Ag nanoparticles in optically clear nonpolar solutions in the absence of specific ligands for silver. Metallic silver is generated upon UV illumination of deaerated TiO(2) solutions containing AgNO(3). The Ag nanoparticles can be obtained in different size-morphological regimes as a function of the irradiation time, due to light-induced photofragmentation and ripening processes. A mechanism for the colloidal stabilization of the silver nanoparticles is tentatively suggested, which regards the TiO(2) nanorods as inorganic stabilizers, thus acting in the same manner as conventional surfactant molecules. The proposed photocatalytic approach offers a convenient method for producing TiO(2)/Ag nanocomposite systems with a certain control over the metal particle size without the use of surfactants and/or additives. Stable colloidal TiO(2)-nanorod-stabilized Ag nanoparticles can be potentially available for a number of applications that require "clean" metal surfaces, such as homogeneous organic catalysis, photocatalysis, and sensing devices.  相似文献   

3.
制备了TiO2纳米颗粒和ZnO纳米棒混合的多孔薄膜电极, 利用瞬态光电压技术研究了染料敏化TiO2/ZnO薄膜中光生载流子的传输特性. 实验结果表明, ZnO纳米棒增加了薄膜中自由电子扩散速率, 减小了复合几率, 改善了能量转换效率.  相似文献   

4.
Engineering of TiO(2) electrode layers is critical to guaranteeing the photoconversion efficiency of dye-sensitized solar cells (DSSCs). Recently, a novel approach has been introduced for producing TiO(2) electrodes using the inverted structures of colloidal crystals. This paper describes a facile route to producing ordered macroporous electrodes from colloidal crystal templates for DSSCs. Using concentrated colloids dispersed in a volatile medium, the colloidal crystal templates were obtained within a few minutes, and the thickness of the template was easily controlled by changing the quantity of colloidal solution deposited. Here, the effects of the structural properties of the inverse opal TiO(2) electrodes on the photovoltaic parameters of DSSCs were investigated. The photovoltaic parameters were measured as a function of pore ordering and electrode film thickness. Moreover, DSSC applications that used either liquid or viscous polymer electrolyte solutions were investigated to reveal the effects of pore size on performance of an inverse opal TiO(2) electrode.  相似文献   

5.
An extremely easy method is presented for producing surfactant-free films of nanocrystalline TiO2 at room temperature with excellent mechanical stability when deposited on glass or plastic electrodes for dye-sensitized solar energy conversion. Prolonged magnetic stirring of commercial TiO2 nanoparticles (Degussa P25) in either ethanol or water results in highly homogeneous dispersions which are used to prepare TiO2 films with surface properties which depend on the solvent used for dispersing the particles, even after sintering. The optical and mechanical properties of films cast from ethanol and water dispersions are compared, and differences in the extent of surface defects and dye binding are observed. Optical absorption, photoluminescence, and resonance Raman spectra of TiO2 films sensitized with Ru(4,4'-dicarboxylic acid-2,2'-bipyridine)2(NCS)2 ("N3") reveal that the electronic coupling of the dye and semiconductor depends on the surface structure of the film which varies with film preparation. Current-voltage data for illuminated and dark dye-sensitized solar cells are obtained as a function of film preparation, and results are compared to spectroscopic data in order to interpret the microscopic basis for variations in solar cell performance, especially with regard to sintered versus unsintered TiO2 films. The results suggest that surface traps associated with oxygen vacancies play a critical role in determining the efficiency of dye-sensitized solar energy conversion through their influence on the binding and electronic coupling of the dye to the semiconductor.  相似文献   

6.
We reported the fabrication and doping effect of Ga-doped ZnO nanorods/electropolymerized polythio-phene(e-PT) hybrid photovoltaic(h-PV) devices. Ga-Doped ZnO nanorod array photoanode devices were fabricated via hydrothermally growing nanorods on sol-gel spin-coating ZnO seed layer, and then the nanorod array was immersed into a thiophene solution to yield a thin polythiophene film by electrochemically polymerization. Afterwards, a thin layer of Al was deposited on the surface of polythiophene to make an electrode for photovoltaic measurement. The ZnO nanorods with different Ga-doping contents were characterized by means of X-ray diffraction(XRD), scanning electron micrograph(SEM) and X-ray photoelectron spectroscopy(XPS). Photovoltaic J-V characterization was performed on the e-PT/ZnO bilayer and bulk heterojunction(BHJ) devices. Though the unsubstituted polythiophene is not an ideal polymer material for solar cells with high power conversion efficiency, it is a sound model for the study on the effect of dopant in hybrid materials. The results indicate that doping Ga can substantially improve the power conversion efficiency of the ZnO-polythiophene solar cell.  相似文献   

7.
Dye-sensitized solar cells (DSSCs) were prepared by capitalizing on mesoporous P-25 TiO(2) nanoparticle film sensitized with N719 dyes. Subjecting TiO(2) nanoparticle films to TiCl(4) treatment, the device performance was improved. More importantly, O(2) plasma processing of TiO(2) film that was not previously TiCl(4)-treated resulted in a lower efficiency; by contrast, subsequent O(2) plasma exposure after TiCl(4) treatment markedly enhanced the power conversion efficiency, PCE, of DSSCs. Remarkably, with TiCl(4) and O(2) plasma treatments dye-sensitized TiO(2) nanoparticle solar cells produced with 21 μm thick TiO(2) film illuminated under 100 mW/cm(2) exhibited a PCE as high as 8.35%, twice of untreated cells of 3.86%.  相似文献   

8.
Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots   总被引:2,自引:0,他引:2  
We report nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. InAs quantum dots of different sizes were synthesized and incorporated in solar cell devices. Efficient charge transfer from InAs quantum dots to TiO2 particles was achieved without deliberate modification of the quantum dot capping layer. A power conversion efficiency of about 1.7% under 5 mW/cm2 was achieved; this is relatively high for a nanocrystalline metal oxide solar cell sensitized with presynthesized quantum dots, but this efficiency could only be achieved at low light intensity. At one sun, the efficiency decreased to 0.3%. The devices are stable for at least weeks under room light in air.  相似文献   

9.
A kind of molecular metal chalcogenide, (N(2)H(4))(3)(N(2)H(5))(4)Sn(2)Se(6) complex, was synthesized in the hydrazine solution and employed as the precursors for SnSe(2) deposition on TiO(2) nanocrystalline porous films. A power conversion efficiency of 0.12% under AM 1.5, 1 sun was obtained for the SnSe(2) sensitized TiO(2) solar cells.  相似文献   

10.
We report a combined experimental and computational study of several ruthenium(II) sensitizers originated from the [Ru(dcbpyH(2))(2)(NCS)(2)], N3, and [Ru(dcbpyH(2))(tdbpy)(NCS)(2)], N621, (dcbpyH(2) = 4,4'-dicarboxy-2,2'-bipyridine, tdbpy = 4,4'-tridecyl-2,2'-bipyridine) complexes. A purification procedure was developed to obtain pure N-bonded isomers of both types of sensitizers. The photovoltaic data of the purified N3 and N621 sensitizers adsorbed on TiO(2) films in their monoprotonated and diprotonated state, exhibited remarkable power conversion efficiency at 1 sun, 11.18 and 9.57%, respectively. An extensive Density Functional Theory (DFT)-Time Dependent DFT study of these sensitizers in solution was performed, investigating the effect of protonation of the terminal carboxylic groups and of the counterions on the electronic structure and optical properties of the dyes. The calculated absorption spectra are in good agreement with the experiment, thus allowing a detailed assignment of the UV-vis spectral features of the two types of dyes. The computed alignments of the molecular orbitals of the different complexes with the band edges of a model TiO(2) nanoparticle provide additional insights into the electronic factors governing the efficiency of dye-sensitized solar cell devices.  相似文献   

11.
Dye-sensitized solar cells (DSSCs) are fabricated using a novel 3C-SiC/TiO(2) nanocomposite as a photoelectrode to enhance the power conversion efficiency. Compared with a pristine nanocrystalline TiO(2) cell, a DSSC based on a 3C-SiC (0.04 wt%)/TiO(2) nanocomposite photoelectrode shows ~115% increase in power conversion efficiency.  相似文献   

12.
We demonstrate that TiO(x) nanocomposite films fabricated using electrostatic layer-by-layer (LbL) assembly improve the power conversion efficiency of photovoltaic cells compared to conventional TiO(x) films fabricated via the sol-gel process. For this study, titanium precursor/poly(allylamine hydrochloride) (PAH) multilayer films were first deposited onto indium tin oxide-coated glass to produce TiO(x) nanocomposites (TiO(x)NC). The specific effect of the LbL processed TiO(x) on photovoltaic performance was investigated using the planar bilayer TiO(x)NC and highly regioregular poly(3-hexylthiophene) (P3HT) solar cells, and the P3HT/LbL TiO(x)NC solar cells showed a dramatic increase in power efficiency, particularly in terms of the short current density and fill factor. The improved efficiency of this device is mainly due to the difference in the chemical composition of the LbL TiO(x)NC films, including the much higher Ti(3+)/Ti(4+) ratio and the highly reactive facets of crystals as demonstrated by XPS and XRD measurement, thus enhancing the electron transfer between electron donors and acceptors. In addition, the grazing incidence wide-angle X-ray scattering (GIWAXS) study revealed the presence of more highly oriented P3HT stacks parallel to the substrate on the LbL TiO(x)NC film compared to those on the sol-gel TiO(x) films, possibly influencing the hole mobility of P3HT and the energy transfer near and at the interface between the P3HT and TiO(x) layers. The results of this study demonstrate that this approach is a promising one for the design of hybrid solar cells with improved efficiency.  相似文献   

13.
In this study, we investigated the interplay of three-dimensional morphologies and the photocarrier dynamics of polymer/inorganic nanocrystal hybrid photoactive layers consisting of TiO(2) nanoparticles and nanorods. Electron tomography based on scanning transmission electron microscopy using high-angle annular dark-field imaging was performed to analyze the morphological organization of TiO(2) nanocrystals in poly(3-hexylthiophene) (P3HT) in optimal solar cell devices. The Three-dimensional (3D) morphologies of these hybrid films were correlated with the photocarrier dynamics of charge separation, transport, and recombination, which were comprehensively probed by various transient techniques. Visualization of these 3D bulk heterojunction morphologies clearly reveals that elongated and anisotropic TiO(2) nanorods in P3HT not only can significantly reduce the probability of the interparticle hopping transport of electrons by providing better connectivity with respect to the TiO(2) nanoparticles, but also tend to form a large-scale donor-acceptor phase-separated morphology, which was found to enhance hole transport. The results support the establishment of a favorable morphology for polymer/inorganic hybrid solar cells due to the presence of the dimensionality of TiO(2) nanocrystals as a result of more effective mobile carrier generation and more efficient and balanced transport of carriers.  相似文献   

14.
A novel heterostructural TiO(2) nanocomposite, which consists of single-crystalline rutile TiO(2) nanorod decorated Degussa P25 nanoparticles, has been fabricated through a facile acidic hydrothermal method and successfully applied as the photoanodes for efficient dye-sensitized solar cells. The morphology, crystal structure, specific surface area and pore size distribution of the obtained nanocomposite were systematically investigated by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), selected-area electron diffraction patterns (SAED) and nitrogen adsorption-desorption measurements. Under standard illumination conditions (AM 1.5, 100 mW cm(-2)), devices with these hybrid anodes exhibited considerably enhanced photocurrent density and overall conversion efficiency in comparison with that of the commercial Degussa P25 electrodes, which can be partially attributed to the light scattering effect in the long-wavelength region as evidenced from the incident photon-to-current conversion efficiency (IPCE) response and the diffuse reflectance spectroscopy. More importantly, devices employing these hybrid anodes have demonstrated extended electron lifetimes and larger electron diffusion coefficient as validated by the intensity-modulated photocurrent/photovoltage spectroscopy measurements, which can be mainly ascribed to the fast electron transport and collection superiority of the single-crystalline nanorods.  相似文献   

15.
Quantum dots sensitized nanocrystalline TiO2 solar cells (QDSSCs) are promising third-generation photovoltaic devices.In comparison with conventional dye-sensitized solar cells (DSSCs),the efficiency of QDSSCs is still very low (about 3%).In this paper,the electrochemical impedance spectroscopy technology has been adopted to investigate the quasi-Fermi level and the carrier dynamics of the colloidal CdSe QDs sensitized TiO2 eletrode with S2-/Sxredox electrolytes and the series resistance of the QDSSCs.In co...  相似文献   

16.
We present photovoltaic devices based on a blend of the conjugated polymer poly(3-hexylthiophene) (P3HT) with cadmium selenide nanorods, where the solvent for film deposition has been carefully chosen to optimize the film morphology. Using 1,2,4-trichlorobenzene (TCB), which has a high boiling point, as solvent for P3HT it is possible to obtain a fibrilar morphology, providing extended pathways for hole transport. Blend devices fabricated using this solvent gave solar power conversion efficiencies of 2.6%. This indicates that efficient transport of electrons and holes is achieved in these films, allowing them to operate effectively at solar illumination intensities.  相似文献   

17.
采用电泳沉积法, 在FTO/介孔TiO2薄膜上制备了介孔TiO2/单壁碳纳米管(SWCNTs)薄膜电极, 用Raman和SEM等手段对薄膜电极进行了表征. 结果表明, SWCNTs已沉积到介孔TiO2薄膜上. 分别用四羧基苯基卟啉(TCPP)和联吡啶钌化合物N719对其进行敏化, 并组装成太阳能电池. 研究结果表明, 与单纯的TiO2粒子膜相比, 介孔TiO2和SWCNTs的紧密结合可使得光生电子更容易传输, 光电转换效率显著提高.  相似文献   

18.
The mechanism of enhancing the light harvesting efficiency of dye-sensitized TiO(2) solar cells by coupling TiO(2) inverse opals or disordered scattering layers to conventional nanocrystalline TiO(2) films has been investigated. Monochromatic incident photon-to-current conversion efficiency (IPCE) at dye-sensitized TiO(2) inverse opals of varying stop band wavelengths and at disordered titania films was compared to the IPCE at bilayers of these structures coupled to nanocrystalline TiO(2) films and to the IPCE at nanocrystalline TiO(2) electrodes. The results showed that the bilayer architecture, rather than enhanced light harvesting within the inverse opal structures, is responsible for the bulk of the gain in IPCE. Several mechanisms of light interaction in these structures, including localization of heavy photons near the edges of a photonic gap, Bragg diffraction in the periodic lattice, and multiple scattering events at disordered regions in the photonic crystal or at disordered films, lead ultimately to enhanced backscattering. This largely accounts for the enhanced light conversion efficiency in the red spectral range (600-750 nm), where the sensitizer is a poor absorber.  相似文献   

19.
Solar cells based on swift self-assembled sensitizer bis(tetrabutylammonium)-cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine)ruthenium(II) (N719) on double layers of 12 + 4 microm thick nanocrystalline TiO2 films exhibit the incident monochromatic photon-to-current conversion efficiency (IPCE) 90% and show a short circuit current density of 17 mA cm(-2), 750 mV open circuit potential and 0.72 fill factor yielding power conversion efficiencies over 9.18% under AM 1.5 sun. For the first time highest power conversion efficiencies are obtained for dye sensitized solar cells using a swift self-assembled procedure.  相似文献   

20.
Zinc oxide (ZnO) nanorods of different structures have been grown on indium-doped tin oxide substrates by using TiO2 as seed layer. The ZnO nanorods have been prepared using TiO2 seed layers annealed at different temperatures via a simple sol–gel method. The X-ray diffraction result indicates that the prepared samples are of wurtzite structure. Dye sensitized solar cells have been fabricated using the prepared ZnO nanorods. The open circuit voltage, short circuit current density, fill factor, and power conversion efficiency of the ZnO nanorod based dye sensitized solar cells prepared using TiO2 seed layers annealed at different temperatures have been determined. The improvement in power conversion efficiency may be due to the flower like structured ZnO nanorods with smaller diameter and large specific surface area which paves way for the efficient electron transfer in hybrid solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号