首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2003,15(21):1693-1698
The voltammetric behaviors of uric acid (UA) and L ‐ascorbic acid (L ‐AA) were studied at well‐aligned carbon nanotube electrode. Compared to glassy carbon, carbon nanotube electrode catalyzes oxidation of UA and L ‐AA, reducing the overpotentials by about 0.028 V and 0.416 V, respectively. Based on its differential catalytic function toward the oxidation of UA and L ‐AA, the carbon nanotube electrode resolved the overlapping voltammetric response of UA and L ‐AA into two well‐defined voltammetric peaks in applying both cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which can be used for a selective determination of UA in the presence of L ‐AA. The peak current obtained from DPV was linearly dependent on the UA concentration in the range of 0.2 μM to 80 μM with a correlation coefficient of 0.997. The detection limit (3δ) for UA was found to be 0.1 μM. Finally, the carbon nanotube electrode was successfully demonstrated as a electrochemical sensor to the determination of UA in human urine samples by simple dilution without further pretreatment.  相似文献   

2.
Au electrode modified with the self-assembled monolayer of a heterocyclic thiol, mercaptotriazole (MTz), is used for the electroanalysis of uric acid (UA) and ascorbic acid (AA). MTz forms a less compact self-assembly on Au electrode. The self-assembly of MTz on Au electrode favors the oxidation of UA and AA at less positive potential. Significant decrease (∼400 mV) in the overpotential and enhancement in the peak current for the oxidation of interfering AA with respect to the unmodified electrode is observed. The negative shift in the oxidation peak potential of AA favors electrochemical sensing of UA without any interference. Two well-separated voltammetric peaks for AA and UA are observed in their coexistence. The large separation between the two voltammetric peaks allows the simultaneous or selective sensing of the analytes without compromising the sensitivity. Linear response is obtained for a wide concentration range. This electrode could sense as low as 1 μM of UA in the presence of 10-fold excess of interfering AA. No change in the sensitivity (0.012 μA/μM) of the electrode toward UA in the presence and absence of AA is observed. Reproducible and stable amperometric flow injection response was obtained upon repetitive injection.  相似文献   

3.
A biosensor for hydrogen peroxide (HP) was developed by immobilizing hemoglobin on a glassy carbon electrode modified with activated carbon nanoparticles/Nafion. The characteristics of the sensor were studied by UV?Cvis spectroscopy and electrochemical methods. The immobilized Hb retained its native secondary structure, undergoes direct electron transfer (with a heterogeneous rate constant of 3.37?±?0.5?s?1), and displays excellent bioelectrocatalytic activity to the reduction of HP. Under the optimal conditions, its amperometric response varies linearly with the concentration of HP in the range from 0.9???M to 17???M. The detection limit is 0.4???M (at S/N?=?3). Due to the commercial availability and low cost of activated carbon nanoparticles, it can be considered as a useful supporting material for construction of other third-generation biosensors.
Figure
A biosensor for hydrogen peroxide (HP) was developed by immobilizing hemoglobin on a glassy carbon electrode modified with activated carbon nanoparticles/Nafion. It can be considered as a useful supporting material for construction of other third-generation biosensors.  相似文献   

4.
A composition of multiwalled carbon nanotube (MWCNT), Nafion and cobalt(II)‐5‐nitrosalophen (CoNSal) is applied for the modification of carbon‐paste electrode (CPE). The pretreated MWCNT is well dispersed in the alcoholic solution of Nafion under the ultrasonic agitation, and the resulted suspension is used as modifier (with 10% w/w) in the matrix of the paste electrode. The prepared electrode further modified by addition of 3 wt% of CoNSal. The resulted modified electrode is used as a sensitive voltammetric sensor for simultaneous determination of uric acid (UA) and ascorbic acid (AA). The electrode showed efficient electrocatalytic activity in lowering the anodic overpotentials and enhancement of the anodic currents. This electrode is able to completely resolve the voltammetric response of UA and AA. The effects of potential sweep rate and pH of the buffer solution on the response of the electrode, toward UA and AA, and the peak resolution is thoroughly investigated by cyclic and differential pulse voltammetry (CV and DPV). The best peak resolution for these compounds using the modified electrode is obtained in solutions with pH 4. The ΔEp for UA and AA in these methods is about 315 mV, which is considerably better than previous reports for these compounds. A linear dynamic range of 1×10?7 to 1×10?4 M with a detection limit of 6×10?8 M is resulted for UA in buffered solutions with pH 4.0. The voltammetric response characteristics for AA are obtained as, the linear range of 5×10?7 to 1×10?4 M with the detection limit of 1×10?7 M. The voltammetric detection system was very stable and the reproducibility of the electrode response, based on the six measurements during one month, was less than 3.5% for the slope of the calibration curves of UA and AA. The prepared modified electrode is successfully applied for the determination of AA and UA in mixture samples and reasonable accuracies are resulted.  相似文献   

5.
This paper describes the simultaneous determination of epinephrine (EP), uric acid (UA) and xanthine (XN) in the presence of ascorbic acid (AA) using electropolymerized ultrathin film of 5-amino-1,3,4-thiadiazole-2-thiol (p-ATT) modified glassy carbon (GC) electrode in 0.2 M phosphate buffer solution (pH 5). Although bare GC electrode resolves the voltammetric signals of AA and XN, it fails to resolve the voltammetric signals of EP and UA in a mixture. However, the p-ATT modified electrode not only separates the voltammetric signals of AA, EP, UA and XN with potential difference of 150, 120 and 400 mV between AA-EP, EP-UA and UA-XN, respectively but also shows higher oxidation current for these molecules. The p-ATT modified electrode exhibits excellent selectivity towards the oxidation of EP, UA and XN in the presence of 40-fold higher concentration of AA. Further, the p-ATT modified electrode was also used for the selective determination of EP in the presence of 40-fold higher concentrations of AA, UA and XN. Using amperometric method, we achieved the lowest detection of 40 nM EP and 60 nM each UA and XN. The amperometric current response was increased linearly with increasing EP concentration in the range of 4.0 × 10−8 to 4.0 × 10−5 M and the detection limit was found to be 27 × 10−11 M (S/N = 3). The practical application of the present modified electrode was demonstrated by determining the concentration of EP in epinephrine tartrate injection and XN in human urine samples.  相似文献   

6.
Jin J  Miwa T  Mao L  Tu H  Jin L 《Talanta》1999,48(5):5686-1011
Preparation and electrochemical responses to nitric oxide (NO) of the electropolymerized films of metal tetraaminophthalocyanines (MTAPc, M=Co, Ni, Cu) are studied to test them as molecular devices for design and construction of amperometric ultramicrosensors for selective and sensitive determination of NO. The ultramicrosensors based on electropolymerized films of MTAPc and Nafion, are found to show a low detection limit, high selectivity and sensitivity to NO determination. The potential interference from some endogenous electroactive substances in biological tissues, such as catecholamines and their metabolites, ascorbic acid (AA), uric acid (UA), and nitrite (NO2), the metabolite of NO at the concentrations higher than those in biological systems could be eliminated by using a technique of DPV or DPA and further coating the modified ultramicrosensors with a layer of Nafion.  相似文献   

7.
《Electroanalysis》2004,16(23):1977-1983
2,2‐bis(3‐Amino‐4‐hydroxyphenyl)hexafluoropropane (BAHHFP) was electro‐polymerized oxidatively on glassy carbon by cyclic voltammetry. The activity of the modified electrode towards ascorbic acid (AA), uric acid (UA) and dopamine (DA) was characterized with cyclic voltammetry and differential puls voltammetry (DPV). The findings showed that the electrode modification drastically suppresses the response of AA and shifts it towards more negative potentials. Simultaneously an enhancement of reaction reversibility is seen for DA and UA. Unusual, selective preconcentration features are observed for DA when the polymer‐modified electrode is polarized at negative potential. In a ternary mixture containing the three analytes studied, three baseline resolved peaks are observed in DPV mode. At physiological pH 7.4, after 5 min preconcentration at ?300 mV, peaks positions were ?0.073, 0.131 and 0.280 V (vs. Ag/AgCl) for AA, DA and UA, respectively. Relative selectivities DA/AA and UA/AA were over 4000 : 1 and 700 : 1, respectively. DA response was linear in the range 0.05–3 μM with sensitivity of 138 μA μM?1 cm?2 and detection limit (3σ) of 5 nM. Sensitive quantification of UA was possible in acidic solution (pH 1.8). Under such conditions a very sharp peak appeared at 630 mV (DPV). The response was linear in the range 0.5–100 μM with sensitivity of 4.67 μA μM?1 cm?2 and detection limit (3σ) of 0.1 μM. Practical utility was illustrated by selective determination of UA in human urine.  相似文献   

8.
《Electroanalysis》2006,18(24):2458-2466
A promising electrochemical biosensor was fabricated by electrochemical grafting of ribonucleic acid (RNA) at 1.8 V (vs. SCE) on glassy carbon electrode (GCE) (denoted as RNA/GCE), for simultaneous detection of dopamine (DA) and uric acid (UA) with coexistence of excess amount of ascorbic acid (AA). The electrode was characterized by X‐ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The RNA modified layer on GCE exhibited superior catalytic ability and anionic exclusive ability in comparison with the DNA modified electrode. Three separated anodic DPV peaks were obtained at 0.312, 0.168 and ?0.016 V for UA, DA and AA, respectively, at the RNA/GCE in pH 7.0 PBS. In the presence of 2.0 mM AA, a linear range of 0.37 to 36 μM with a detection limit of 0.2 μM for DA, and in the range of 0.74 to 73 μM with a detection limit of 0.36 μM for UA were obtained. The co‐existence of 5000 fold AA did not interfere with the detection of DA or UA. The modified electrode shows excellent selectivity, good sensitivity and good stability.  相似文献   

9.
M Liu  L Wang  J Deng  Q Chen  Y Li  Y Zhang  H Li  S Yao 《The Analyst》2012,137(19):4577-4583
A new ferrocene derivative (1-[(4-amino) phenylethynyl]ferrocene, Fc-NH(2)) was synthesized for the first time. The ferrocene derivative molecule contained the phenylethynyl skeleton, ferrocene and amino groups with excellent electrochemical properties. The graphene/Fc-NH(2) nanocomposite was prepared by mixing graphene solution and Fc-NH(2) solution in one pot and the nanocomposite was utilized to construct a Nafion/graphene/Fc-NH(2) modified glassy carbon electrode (GCE). The ferrocene derivative immobilized on the graphene can enhance the charge-transport ability of the nanocomposite, stabilize the graphene and prevent the leakage of ferrocene. The detection signal of dopamine (DA) was significantly amplified on the Nafion/graphene/Fc-NH(2)/GCE. It was experimentally demonstrated that the signal enhancement results from the synergy amplification effect of graphene and the Fc-NH(2). The oxidation peak currents of DA were linearly related to the concentrations in the range of 5 × 10(-8) to 2 × 10(-4) M with the detection limit of 20 nM in the absence of uric acid (UA) and ascorbic acid (AA). In the presence of 10(-3) M AA and 10(-4) M UA, the linear response range was 1 × 10(-7) to 4 × 10(-4) M, and the detection limit was 50 nM at S/N = 3. Using the proposed Nafion/Fc-NH(2)/graphene/GCE, DA was successfully determined in real samples with the standard addition method.  相似文献   

10.
Uric acid (UA) was determined in the presence of ascorbic acid (AA) by using a carbon paste electrode modified superficially by a β‐cyclodextrin film (CPE/β‐CD). The surface carbon paste electrode was prepared applying a 30 cycles potential program and using a 1 M HClO4+0.01 M β‐CD electrolytic solution. The UA and AA solutions were used to evaluate the electrode selectivity and sensitivity by cyclic voltammetric and amperometric methods. In these experiments the detection limit for UA was (4.6±0.01)×10?6 M and the RSD calculated from the amperometric curves was 10%. From the data obtained it was possible to quantify UA in the urine and saliva samples. Selective detection of UA was improved by formation of an inclusion complex between β‐CD and UA. The results show that the CPE/β‐CD is a good candidate due to its selectivity and sensitivity in the UA determination in complex samples like the biological fluids.  相似文献   

11.
Electrodes for the dopamine (DA) determination in biological samples have been developed with improved selectivity and sensitivity in an excess of ascorbic acid (AA). Negatively charged Ni(II) complex was synthesized and electropolymerized on the glassy carbon electrode to impart the surface with anionic characteristics that could act both as a catalyst and as a discriminating layer against AA based on the electrostatic interaction. Thus prepared electrodes enabled selective determination of DA even in a large excess of AA by differential pulse voltammetry at physiological pH. Linear response was found down to 1.0 x 10(-7) M with 5.0 x 10(-9) M of LOD (Limit of Detection). In a flow injection analysis performed in an amperometric mode, the detection limit was lowered by two orders of magnitude down to 1.0 x 10(-9) M with a linear range of 1.0 x 10(-9) to 1.0 x 10(-6) M. The relative standard deviation was found to be 3.36% from 25 independent measurements for 1.0 x 10(-5) M of DA. Stable oxidation current of DA was observed even after 30 days storage in air. The recoveries of DA in the 100-fold diluted human urine samples were 97.7% for 4 measurements. The rate constant for the DA oxidation was 1.3 x 10(-3) cm s(-1) from hydrodynamic experiments using a rotating disk electrode.  相似文献   

12.
《Electroanalysis》2005,17(24):2217-2223
Glassy carbon electrode modified by microcrystals of fullerene‐C60 mediates the voltammetric determination of uric acid (UA) in the presence of ascorbic acid (AA). Interference of AA was overcome owing to the ability of pretreated fullerene‐C60‐modified glassy carbon electrode. Based on its strong catalytic function towards the oxidation of UA and AA, the overlapping voltammetric response of uric acid and ascorbic acid is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents under conditions of both linear sweep voltammetry (LSV) and Osteryoung square‐wave voltammetry (OSWV). At pH 7.2, a linear calibration graph is obtained for UA in linear sweep voltammetry over the range from 0.5 μM to 700 μM with a correlation coefficient of 0.9904 and a sensitivity of 0.0215 μA μM?1 . The detection limit (3σ) is 0.2 μM for standard solution. AA in less than four fold excess does not interfere. The sensitivity and detection limit in OSWV were found as 0.0255 μA μM?1 and 0.12 μM, for standard solution respectively. The presence of physiologically common interferents (i.e. adenine, hypoxanthine and xanthine) negligibly affects the response of UA. The fullerene‐C60‐modified electrode exhibited a stable, selective and sensitive response to uric acid in the presence of interferents.  相似文献   

13.
Highly stable Nafion‐covered hexacyanoferrate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐Fe(CN)64?/Naf) film modified glassy carbon electrode (GCE), for the selective detection of dopamine (DA) in the presence of ascorbic acid (AA), was prepared by first ion‐exchanging Fe(CN)64? into PLL‐GA coating on GCE then sealing it with a Nafion outer layer. The Nafion over layer is crucial in preventing leaching of Fe(CN)64? ions from the inner layer. The first layer was acting as electrocatalyst for DA oxidation and the outer coating acted as discriminating layer for selective permeation of DA in the presence of interfering anionic species. More than 90% of the initial response was retained after coating with the Nafion protecting layer compared to a huge loss (>60%) without Nafion outer layer. 5% Nafion coating was identified as optimum thickness for the selective detection of DA in the presence of AA.  相似文献   

14.
《Electroanalysis》2006,18(7):713-718
Single walled carbon nanotubes (SWCNT) and room temperature ionic liquid (RTIL) were used to make a gel microelectrode for studies of the oxidation of nitric oxide (NO). The Faraday response of the gel microelectrode was contributed from two components: an outside‐surface microdisk and a thin‐layer cell formed by inner porous electrode materials, and enhanced by the thin‐layer effect. An EC mechanism, electrochemical NO oxidation followed by a chemical oxidation, was proposed. The gel microelectrode with a Nafion coating eliminated interferences from nitrite and some biomolecules, improved stability, and had a linear response range from 100 nM to 100 μM.  相似文献   

15.
制备了易于磁性分离、硫堇(Thi)包覆的四氧化三铁(Fe3O4)纳米复合物。通过静电吸附作用,将萘酚(Nafion)、Thi包覆的Fe3O4复合纳米粒子层层修饰到玻碳电极表面,再利用Thi分子中的氨基吸附纳米金,最后固载甲胎蛋白抗体,从而制得灵敏度高、稳定性好的无试剂电流型甲胎蛋白免疫传感器。实验通过透射电子显微镜(TEM)对该复合纳米粒子进行表征,并用循环伏安法考察了电极的电化学特性。结果表明,Fe3O4/Thi复合纳米粒子修饰的电极在实验过程中呈现出良好的氧化还原活性,其检测范围为0.05~20μg/L,检出限为0.03μg/L。  相似文献   

16.
A graphite nanosheet (GNS)‐Nafion modified glassy carbon (GC) electrode was prepared and used for highly sensitive and selective determination of dopamine (DA). The GNS‐Nafion/GC electrode displayed excellent electrocatalytic activities towards DA and ascorbic acid (AA). The selective determination of DA was carried out successfully in the presence of AA by differential pulse voltammetry. High sensitivity (3.695 μA μM?1) and low detection limit (0.02 μM, S/N=3) for the DA detection were obtained. These good properties can be attributed to a large amount of edge plane defects presented on GNSs and the charge‐exclusion and concentration features of Nafion.  相似文献   

17.
The properties of graphite electrode (Gr) modified with poly(diallyl dimethyl ammonium chloride) (PDDA) for the detection of uric acid (UA) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA) have been investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The polymer modified graphite electrode was prepared by a very simple method just by immersing the graphite electrode in PDDA solution for 20 minutes. The PDDA/Gr modified electrode displayed excellent electrocatalytic activity towards the oxidation of UA, DA and AA compared to that at the bare graphite electrode. The electrochemical oxidation signals of UA, DA and AA are well resolved into three distinct peaks with peak potential separations of 220 mV, 168 mV and 387 mV between AA‐DA, DA‐UA and AA‐UA respectively in cyclic voltammetry studies and the corresponding peak potential separations are 230 mV, 130 mV and 354 mV respectively in differential pulse voltammetry. The lowest detection limits obtained for UA, DA and AA were 1×10?7 M, 2×10?7 M and 800×10?9 M respectively. The PDDA/Gr electrode efficiently eliminated the interference of DA and a high concentration of AA in the determination of UA with good selectivity, sensitivity and reproducibility. The modified electrode was also successfully applied for simultaneous determination of UA, DA and AA in their ternary mixture.  相似文献   

18.
Electrodeposition of Pt-Pb nanoparticles (PtPbNPs) to multi-walled carbon nanotubes (MWCNTs) resulted in a stable PtPbNP/MWCNT nanocomposite with high electrocatalytic activity to glucose oxidation in either neutral or alkaline medium. More importantly, the nanocomposite electrode with a slight modification exhibited high sensitivity, high selectivity, and low detection limit in amperometric glucose sensing at physiological neutral pH (poised at a negative potential). At +0.30 V in neutral solution, the nanocomposite electrode exhibited linearity up to 11 mM of glucose with a sensitivity of 17.8 μA cm−2 mM−1 and a detection limit of 1.8 μM (S/N = 3). Electroactive ascorbic acid (0.1 mM), uric acid (0.1 mM) and fructose (0.3 mM) invoked only 23%, 14% and 9%, respectively, of the current response obtained for 3 mM glucose. At −0.15 V in neutral solution, the electrode responded linearly to glucose up to 5 mM with a detection limit of 0.16 mM (S/N = 3) and detection sensitivity of ∼18 μA cm−2 mM−1. At this negative potential, ascorbic acid, uric acid, and fructose were not electroactive, therefore, not interfering with glucose sensing. Modification of the nanocomposite electrode with Nafion coating followed by electrodeposition of a second layer of PtPbNPs on the Nafion coated PtPbNP/MWCNT nanocomposite produced a glucose sensor (poised at −0.15 V) with a lower detection limit (7.0 μM at S/N = 3) and comparable sensitivity, selectivity and linearity compared to the PtPbNP/MWCNT nanocomposite. The Nafion coating lowered the detection limit by reducing the background noise, while the second layer of PtPbNPs restored the sensitivity to the level before Nafion coating.  相似文献   

19.
The present study reports the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in 0.20 M phosphate buffer solution (pH 5.0) using electropolymerized ultrathin film of 5-amino-2-mercapto-1,3,4-thiadiazole (AMT) on glassy carbon (GC) electrode. The bare GC electrode does not separate the voltammetric signals of AA, DA and UA. However, electropolymerized AMT (p-AMT) modified GC electrode not only resolved the voltammetric signals of AA, DA and UA but also dramatically enhanced their oxidation peak currents when compared to bare GC electrode. The enhanced oxidation currents for AA, DA and UA at p-AMT modified electrode are due to the electrostatic interactions between them and the polymer film. Using amperometric method, we achieved the lowest detection of 75 nM AA, 40 nM DA and 60 nM UA at p-AMT modified electrode. The amperometric current was linearly increased from 200 nM to 0.80 mM for each AA, DA and UA and the lowest detection limit was found to be 0.92, 0.07 and 0.57 nM, respectively (S/N = 3). The practical application of the modified electrode was demonstrated by the determination of DA in dopamine hydrochloride injection.  相似文献   

20.
A nano-composite of DNA/poly(p-aminobenzensulfonic acid) bi-layer modified glassy carbon electrode as a biosensor was fabricated by electro-deposition method. The DNA layer was electrochemically deposited on the top of electropolymerized layer of poly(p-aminobenzensulfonic acid) (Pp-ABSA). Scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemical impedance spectrum were used for characterization. It demonstrated that the deposited Pp-ABSA formed a 2-D fractal patterned nano-structure on the electrode surface, and which was further covered by a uniform thin DNA layer. Cyclic voltammetry and electrochemical impedance spectrum were used to characterize the deposition, and demonstrated the conductivity of the Pp-ABSA layer. The biosensor was applied to the detection of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). In comparison with DNA and Pp-ABSA single layer modified electrodes, the composite bi-layer modification provided superior electrocatalytic actively towards the oxidation of DA, UA and AA, and separated the originally overlapped differential pulse voltammetric signals of UA, DA and AA oxidation at the bare electrode into three well-defined peaks at pH 7 solution. The peak separation between AA and DA, AA and UA was 176 mV and 312 mV, respectively. In the presence of 1.0 mM AA, the anodic peak current was a linear function of the concentration of DA in the range 0.19-13 microM. The detection limit was 88 nM DA (s/n=3). The anodic peak current of UA was also a linear function of concentration in the range 0.4-23 microM with a detection limit of 0.19 microM in the presence of 0.5 mM AA. The superior sensing ability was attributed to the composite nano-structure. An interaction mechanism was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号