首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Anupam  C Geibel  Z Hossain 《J Phys Condens Matter》2012,24(32):326002, 1-326002, 7
The results of the magnetic susceptibility, isothermal magnetization, heat capacity, electrical resistivity and magnetoresistance measurements on polycrystalline Eu(3)Ni(4)Ga(4) are presented. Eu(3)Ni(4)Ga(4) forms in Na(3)Pt(4)Ge(4)-type cubic crystal structure (space group [Formula: see text]). The temperature dependence of the magnetic susceptibility of Eu(3)Ni(4)Ga(4) confirms the divalent state (Eu(2+)) of Eu ions with an effective magnetic moment μ(eff)?=?7.98?μ(B). At low fields, e.g.?at 0.01?T, a magnetic phase transition to an antiferromagnetically ordered state occurs at T(N)?=?10.9?K, which is further confirmed by the temperature dependence of the heat capacity and electrical resistivity. The field dependence of isothermal magnetization at 2?K reveals the presence of two field induced metamagnetic transitions at H(c1) and H(c2)?=?0.55 and 1.2?T, respectively and a polarized phase above H(PO)?=?1.7?T. The reduced jump in the heat capacity at the transition temperature, ΔC|(T(N))?=?13.48?J/mol-Eu?K would indicate an amplitude modulated (AM) antiferromagnetic structure. An interesting feature is that a large negative magnetoresistance, MR?=?[ρ(H)?-?ρ(0)]/ρ(0), is observed in the vicinity of magnetic transition even up to 2T(N). Similar large magnetoresistance has been observed in the paramagnetic state in some Gd and Eu based alloys and has been attributed to the magneto-polaronic effect.  相似文献   

2.
The magnetic behavior of binary compound CeIn(2) has been reported to be unusual in the sense that this compound appears to exhibit a first-order ferromagnetic transition at a rather high temperature of (T(C)=)22 K, which is not so common for Ce systems. In order to throw more light on the magnetic behavior of this compound, we have carried out detailed magnetization, and electrical resistivity studies as a function of temperature, magnetic field and external pressure, in addition to heat-capacity measurements. The plots of H/M versus M(2) at low fields are interestingly characterized by negative slopes, not only near T(C), but also at lower temperatures, a source of which could be attributed to magnetic-field-induced transitions at much lower temperatures. The sign of magnetoresistance tends to change from positive to negative with increasing temperature, as though there is a gradual change in the magnetic character. Finally, the magnetic ordering temperature increases with increasing pressure (until 20 kbar), as though this compound lies at the left-hand side of the peak in Doniach’s magnetic phase diagram.  相似文献   

3.
We report the first observation of non-Fermi-liquid (NFL) effects in a clean Yb compound at ambient pressure and zero magnetic field. The electrical resistivity and the specific-heat coefficient of high-quality single crystals of YbRh(2)Si(2) present a linear and a logarithmic temperature dependence, respectively, in more than a decade in temperature. We ascribe this NFL behavior to the presence of (presumably) quasi-2D antiferromagnetic spin fluctuations related to a very weak magnetic phase transition at T(N) approximately 65 mK. Application of hydrostatic pressure induces anomalies in the electrical resistivity, indicating the stabilization of magnetic order.  相似文献   

4.
The temperature dependence of the ac susceptibility under pressure has been used to track the Néel temperature T(N) of the Mott insulators LaMnO3, CaMnO3, and YCrO3. Bloch's rule relating T(N) to volume V, viz., alpha=dlog(T(N)/dlog(V=-3.3, is obeyed in YCrO3 and CaMnO3; it fails in LaMnO3. This breakdown is interpreted to be due to a sharp increase in the factor [U(-1)+(2Delta)(-1)] entering the superexchange perturbation formula. A first-order change at 7 kbar indicates that the transition from localized-electron to band magnetism is not smooth.  相似文献   

5.
We report bulk superconductivity (SC) in Eu(0.2)Sr(0.8)(Fe(0.86)Co(0.14))(2)As(2) single crystals by means of electrical resistivity, magnetic susceptibility and specific heat measurements with T(c) is approximately equal to 20 K and an antiferromagnetic (AFM) ordering of Eu(2+) moments at T(N) is approximately equal to 2.0 K in zero field. (75)As NMR experiments have been performed in the two external field directions (H is parallel to ab) and (H is parallel to c). (75)As-NMR spectra are analysed in terms of first-order quadrupolar interaction. Spin-lattice relaxation rates (1/T(1)) follow a T(3) law in the temperature range 4.2-15 K. There is no signature of a Hebel-Slichter coherence peak just below the SC transition, indicating a non-s-wave or s(±) type of superconductivity. In the temperature range 160-18 K 1/T(1)T follows the C/(T+θ) law reflecting 2D AFM spin fluctuations.  相似文献   

6.
We report on muon-spin rotation and relaxation (μSR), electrical resistivity, magnetization and differential scanning calorimetry measurements performed on a high-quality single crystal of Cs(0.8)(FeSe(0.98))(2). Whereas our transport and magnetization data confirm the bulk character of the superconducting state below T(c)=29.6(2) K, the μSR data indicate that the system is magnetic below T(N)=478.5(3) K, where a first-order transition occurs. The first-order character of the magnetic transition is confirmed by differential scanning calorimetry data. Taken all together, these data indicate in Cs(0.8)(FeSe(0.98))(2) a microscopic coexistence between the superconducting phase and a strong magnetic phase. The observed T(N) is the highest reported to date for a magnetic superconductor.  相似文献   

7.
Nematic order and its fluctuations have been widely found in iron-based superconductors. Above the nematic order transition temperature, the resistivity shows a linear relationship with the uniaxial pressure or strain along the nematic direction and the normalized slope is thought to be associated with nematic susceptibility. Here we systematically studied the uniaxial pressure dependence of the resistivity in Sr_(1-x)Ba_xFe_(1.97)Ni_(0.03)As_2, where nonlinear behaviors are observed near the nematic transition temperature. We show that it can be well explained by the Landau theory for the second-order phase transitions considering that the external field is not zero. The effect of the coupling between the isotropic and nematic channels is shown to be negligible. Moreover, our results suggest that the nature of the magnetic and nematic transitions in Sr_(1-x)Ba_xFe_2As_2 is determined by the strength of the magnetic-elastic coupling.  相似文献   

8.
The magnetic properties of layered hydroxylammonium fluorocobaltate (NH(3)OH)(2)CoF(4) were investigated by measuring its dc magnetic susceptibility in zero-field-cooled (ZFC) and field-cooled (FC) regimes, its frequency dependent ac susceptibility, its isothermal magnetization curves after ZFC and FC regimes, and its heat capacity. Effects of pressure and magnetic field on magnetic phase transitions were studied by susceptibility and heat capacity measurements, respectively. The system undergoes a magnetic phase transition from a paramagnetic state to a canted antiferromagnetic state exhibiting a weak ferromagnetic behavior at T(C) = 46.5 K and an antiferromagnetic transition at T(N) = 2.9 K. The most spectacular manifestation of the complex magnetic behavior in this system is a shift of the isothermal magnetization hysteresis loop in a temperature range below 20 K after the FC regime-an exchange bias phenomenon. We investigated the exchange bias as a function of the magnetic field during cooling and as a function of temperature. The observed exchange bias was attributed to the large exchange anisotropy which exists due to the quasi-2D structure of the layered (NH(3)OH)(2)CoF(4) material.  相似文献   

9.
The effect of hydrostatic pressure (P) on closed-loop phase behavior of deuterated polystyrene-block-poly(n-pentyl methacrylate) copolymers [dPS-PnPMA] was investigated by using small-angle neutron scattering and birefringence. For P<20.7 bar, dPS-PnPMA exhibited a lower disorder-to-order transition temperature (T(LDOT)) at 175 degrees C, and then an upper order-to-disorder transition temperature (T(UODT)) at 255 degrees C. With increasing pressure both T(LDOT) and T(UODT) were markedly changed, where dT(LDOT)/dP was 725 degrees C/kbar and dT(UODT)/dP was -725 degrees C/kbar. These are consistent with predictions by the Clausius-Clapeyron equation using measured values of the volume and enthalpy changes of both transitions. The large pressure coefficients imply that the closed-loop phase behavior observed for PS-PnPMA is an entropic-driven phase transition.  相似文献   

10.
The vortex-lattice melting transition in Bi(2)Sr(2)CaCu(2)O(8 + delta) single crystals was studied using in-plane resistivity measurements in magnetic fields tilted away from the c axis to the ab plane. In order to avoid the surface barrier effect which hinders the melting transition in the conventional transport measurements, we used the Corbino geometry of electric contacts. The complete H(c) - H(ab) phase diagram of the melting transition in Bi(2)Sr(2)CaCu(2)O(8 + delta) is obtained for the first time. The c-axis melting field component H(c)(melt) exhibits the novel, stepwise dependence on the in-plane magnetic fields H(ab) which is discussed on the basis of the crossing vortex-lattice structure. The peculiar resistance behavior observed near the ab plane suggests the change of phase transition character from first to second order.  相似文献   

11.
C-axis oriented MgB_2 thin films were synthesized on single-crystal MgO (111) substrates using a chemical vapour deposition technique. The as-formed films revealed a sharp superconducting transition temperature of 38K with the transition width 0.2K. The temperature dependence of the upper critical magnetic field H_{c2}(T) in the films was determined via resistivity for magnetic field H parallel and perpendicular to the c axis of the films. Using the Werthamer-Helfand-Hohenberg formula, we obtained the anisotropy ratio of the upper critical field γ=1.2.  相似文献   

12.
The temperature dependence of the resistivity rho(T) and of the dc magnetic susceptibility chi(T) were measured on high-quality LNiO3 (L = La,Pr,Nd,Nd0.5Sm0.5) samples synthesized under high oxygen pressure. Subtraction of the rare-earth contribution to chi(T) allows the presentation of the evolution of the susceptibility of the NiO3 array from Pauli to Curie-Weiss paramagnetism with decreasing bandwidth. A metal-insulator transition occurring at a temperature T(t) = T(N) is first order for L = Pr and Nd; it becomes second order and produces no anomaly in chi(-1)(T) at a T(t)>T(N) for L = Nd0.5Sm0.5. In the antiferromagnetic domain T相似文献   

13.
We have synthesized polycrystalline samples of Eu(1-x)K(x)Fe2As2 (x = 0-1) and carried out systematic characterization using x-ray diffraction, ac and dc magnetic susceptibility, and electrical resistivity measurements. A clear signature of the coexistence of a superconducting transition (T(c) = 5.5 K) with spin density wave (SDW) ordering is observed in our underdoped sample with x = 0.15. The SDW transition disappears completely for the x = 0.3 sample and superconductivity arises below 20 K. The superconducting transition temperature Tc increases with increase in the K content and a maximum Tc = 33 K is reached for x = 0.5, beyond which it decreases again. The doping dependent Tx phase diagram is extracted from the magnetic and electrical transport data. It is found that magnetic ordering of Eu moments coexists with the superconductivity up to x = 0.6. The isothermal magnetization data taken at 2 K for the doped samples suggest the 2+ valence state of the Eu ions. We also present the temperature dependence of the lower critical field H(c1) of the superconducting polycrystalline samples. The values of H(c1)(0) obtained for x = 0.3, 0.5, and 0.7 after taking the demagnetization factor into account are 202, 330, and 212 Oe, respectively. The London penetration depth λ(T) calculated from the lower critical field does not show exponential dependence at low temperature, as would be expected for a fully gapped clean s-wave superconductor. In contrast, it shows a T2 power law feature up to T = 0.3Tc, as observed in Ba(1-x)K(x)Fe2As2 and BaFe(2-x)Co(x)As2.  相似文献   

14.
The dependence of the superconducting transition temperature T(c) on nearly hydrostatic pressure has been determined to 67 GPa in an ac susceptibility measurement for a Li sample embedded in helium pressure medium. With increasing pressure, superconductivity appears at 5.47 K for 20.3 GPa, T(c) rising rapidly to approximately 14 K at 30 GPa. The T(c)(P) dependence to 67 GPa differs significantly from that observed in previous studies where no pressure medium was used. Evidence is given that superconductivity in Li competes with symmetry breaking structural phase transitions which occur near 20, 30, and 62 GPa. In the pressure range 20-30 GPa, T(c) is found to decrease rapidly in a dc magnetic field, the first evidence that Li is a type I superconductor.  相似文献   

15.
The striped cuprate La(2-x)Ba(x)CuO(4) (x=1/8) undergoes several transitions below the charge-ordering temperature T(co)=54 K. From Nernst experiments, we find that, below T(co), there exists a large, anomalous Nernst signal e(N,even)(H,T) that is symmetric in field H, and remains finite as H→0. The time-reversal violating signal suggests that, below T(co), vortices of one sign are spontaneously created to relieve interlayer phase frustration.  相似文献   

16.
YMn2 compound doped with57Fe was investigated using57Fe Mössbauer resonance in the temperature range 4.2–400 K. The magnetically split spectra were analyzed assuming two magnetically nonequivalent Fe sites with relative population dependent on iron concentration. In the transition temperature region a coexistence of the magnetic and nonmagnetic components was observed in the temperature span of about 50 K. A thermal hysteresis (of about 25 K) of the magnetic component confirms the first-order type magnetic transition. Temperature dependence of the hyperfine field of the magnetic component could be interpreted in terms of spin-fluctuation theory.  相似文献   

17.
Measurements of magnetic and transport properties were performed on needle-shaped single crystals of Ce_(12)Fe_(57.5)As_(41)and La_(12)Fe_(57.5)As_(41).The availability of a complete set of data enabled a side-by-side comparison between these two rare earth compounds.Both compounds exhibited multiple magnetic orders within 2-300 K and metamagnetic transitions at various fields.Ferromagnetic transitions with Curie temperatures of 100 and 125 K were found for Ce_(12)Fe_(57.5)As_(41)and La_(12)Fe_(57.5)As_(41),respectively,followed by antiferromagnetic type spin reorientations near Curie temperatures.The magnetic properties underwent complex evolution in the magnetic field for both compounds.An antiferromagnetic phase transition at about 60 K and 0.2 T was observed merely for Ce_(12)Fe_(57.5)As_(41).The field-induced magnetic phase transition occurred from antiferromagnetic to ferromagnetic structure.A strong magnetocrystalline anisotropy was evident from magnetization measurements of Ce_(12)Fe_(57.5)As_(41).A temperature-field phase diagram was present for these two rare earth systems.In addition,a logarithmic temperature dependence of electrical resistivity was observed in the two compounds within a large temperature range of 150-300 K,which is rarely found in 3D-based compounds.It may be related to Kondo scattering described by independent localized Fe 3d moments interacting with conduction electrons.  相似文献   

18.
We observe a singularity in the temperature derivative drho/dT of resistivity at the Curie point of high-quality (Ga,Mn)As ferromagnetic semiconductors with Tc's ranging from approximately 80 to 185 K. The character of the anomaly is sharply distinct from the critical contribution to transport in conventional dense-moment magnetic semiconductors and is reminiscent of the drho/dT singularity in transition metal ferromagnets. Within the critical region accessible in our experiments, the temperature dependence on the ferromagnetic side can be explained by dominant scattering from uncorrelated spin fluctuations. The singular behavior of drho/dT on the paramagnetic side points to the important role of short-range correlated spin fluctuations.  相似文献   

19.
The upper critical field, H(c2), of Mg(B1-xCx)(2) has been measured in order to probe the maximum magnetic field range for superconductivity that can be attained by C doping. Carbon doped MgB2 filaments were prepared, and for carbon levels below 4% the transition temperatures are depressed by about 1 K/% C and H(c2)(T=0) rises by about 5 T/% C. This means that 3.8% C substitution will depress T(c) from 39.2 to 36.2 K and raise H(c2)(T=0) from 16.0 to 32.5 T. These rises in H(c2) are accompanied by a rise in resistivity at 40 K from about 0.5 to about 10 microOmega cm.  相似文献   

20.
We present measurements of the ab-plane magnetic penetration depth, lambda(T), in five optimally doped Pr(1.855)Ce(0.145)CuO(4-y) films for 1.6 K< or =T < or =T(c) approximately 24 K. Low resistivities, high superfluid densities n(s)(T) proportional, variant lambda(-2)(T), high T(c)'s, and small transition widths are reproducible and indicative of excellent film quality. For all five films, lambda(-2)(T)/lambda(-2)(0) at low T is well fitted by an exponential temperature dependence with a gap, Delta(min), of 0.85k(B)T(c). This behavior is consistent with a nodeless gap and is incompatible with d-wave superconductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号