首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Unravelling the atomic structures of small gold clusters is the key to understanding the origin of metallic bonds and the nucleation of clusters from organometallic precursors. Herein we report the X‐ray crystal structure of a charge‐neutral [Au18(SC6H11)14] cluster. This structure exhibits an unprecedented bi‐octahedral (or hexagonal close packing) Au9 kernel protected by staple‐like motifs including one tetramer, one dimer, and three monomers. Until the present, the [Au18(SC6H11)14] cluster is the smallest crystallographically characterized gold cluster protected by thiolates and provides important insight into the structural evolution with size. Theoretical calculations indicate charge transfer from surface to kernel for the HOMO–LUMO transition.  相似文献   

2.
Decreasing the core size is one of the best ways to study the evolution from AuI complexes into Au nanoclusters. Toward this goal, we successfully synthesized the [Au18(SC6H11)14] nanocluster using the [Au18(SG)14] (SG=L ‐glutathione) nanocluster as the starting material to react with cyclohexylthiol, and determined the X‐ray structure of the cyclohexylthiol‐protected [Au18(C6H11S)14] nanocluster. The [Au18(SR)14] cluster has a Au9 bi‐octahedral kernel (or inner core). This Au9 inner core is built by two octahedral Au6 cores sharing one triangular face. One transitional gold atom is found in the Au9 core, which can also be considered as part of the Au4(SR)5 staple motif. These findings offer new insight in terms of understanding the evolution from [AuI(SR)] complexes into Au nanoclusters.  相似文献   

3.
We report the controlled growth of Au25(SR)18 and Au38 (SR)24 (where R = CH2CH2Ph) nanoclusters of molecular purity via size-focusing from the same crude product that contains a distribution of nanoclusters. In this method, gold salt was first mixed with tetraoctylammonium bromide (TOAB), and then reacted with excess thiol to form Au(I)-SR polymers in THF (as opposed to toluene in previous work), followed by NaBH 4 reduction. The resultant crude product contains polydisperse nanoclusters and was then used as the common starting material for controlled growth of Au25(SR)18 and Au38(SR)24 , respectively. In Route I, Au25(SR)18 nanoclusters of molecular purify were produced from the crude product after 6 h aging at room temperature. In Route II, the crude product was isolated and further subjected to thermal thiol etching in a toluene solution containing excess thiol, and one obtained pure Au38(SR)24 nanoclusters, instead of Au25(SR)18 . This work not only provides a robust and simple method to prepare both Au25(SR)18 and Au38(SR)24 nanoclusters, but also reveals that these two nanoclusters require different environments for the size-focusing growth process.  相似文献   

4.
Coherent vibrational dynamics can be observed in atomically precise gold nanoclusters using femtosecond time-resolved pump-probe spectroscopy. It can not only reveal the coupling between electrons and vibrations, but also reflect the mechanical and electronic properties of metal nanoclusters, which holds potential applications in biological sensing and mass detection. Here, we investigated the coherent vibrational dynamics of [Au25(SR)18]- nanoclusters by ultrafast spectroscopy and revealed the origins of these coherent vibrations by analyzing their frequency, phase and probe wavelength distributions. Strong coherent oscillations with frequency of 40 cm-1 and 80 cm-1 can be reproduced in the excited state dynamics of [Au25(SR)18]-, which should originate from acoustic vibrations of the Au13 metal core. Phase analysis on the oscillations indicates that the 80 cm-1 mode should arise from the frequency modulation of the electronic states while the 40 cm-1 mode should originate from the amplitude modulation of the dynamic spectrum. Moreover, it is found that the vibration frequencies of [Au25(SR)18]- obtained in pump-probe measurements are independent of the surface ligands so that they are intrinsic properties of the metal core. These results are of great value to understand the electron-vibration coupling of metal nanoclusters.  相似文献   

5.
Singlet oxygen, 1O2, can be generated by molecules that upon photoexcitation enable the 3O21O2 transition. We used a series of atomically precise Au24M(SR)18 clusters, with different R groups and doping metal atoms M. Upon nanosecond photoexcitation of the cluster, 1O2 was efficiently generated. Detection was carried out by time-resolved electron paramagnetic resonance (TREPR) spectroscopy. The resulting TREPR transient yielded the 1O2 lifetime as a function of the nature of the cluster. We found that: these clusters indeed generate 1O2 by forming a triplet state; a more positive oxidation potential of the molecular cluster corresponds to a longer 1O2 lifetime; proper design of the cluster yields results analogous to those of a well-known reference photosensitizer, although more effectively. Comprehensive kinetic analysis provided important insights into the mechanism and driving-force dependence of the quenching of 1O2 by gold nanoclusters. Understanding on a molecular basis why these molecules may perform so well in 1O2 photosensitization is instrumental to controlling their performance.

Atomically precise Au24M(SR)18 clusters were used as singlet-oxygen photosensitizers. Comprehensive kinetic analysis provided insights into the mechanism and driving-force dependence of the quenching of 1O2 by gold nanoclusters.  相似文献   

6.
In this work, the effects of thiolate ligands (‐SR, e.g., chain length and functional moiety) on the accessibility and catalytic activity of thiolate‐protected gold nanoclusters (e.g., Au25(SR)18) for 4‐nitrophenol hydrogenation is reported. The data suggest that Au25(SR)18 bearing a shorter alkyl chain shows a better accessibility to the substrates (shown by shorter induction time, t0) and a higher catalytic activity (shown by higher apparent reaction rate constant, kapp). The functional moiety of the ligands is another determinant factor, which clearly suggests that ligand engineering of Au25(SR)18 would be an efficient platform for fine‐tuning its catalytic properties.  相似文献   

7.
<正>金原子簇已经成为一种重要的金纳米材料,广泛地应用于纳米科学和纳米技术领域~1。由于量子尺寸效应,金原子簇具有独特的物理化学性质,使其在光学、太阳能光伏、催化以及生物学领域具有很好的前景~(2,3)。随着现代合成方法的发展,尺寸聚焦方法和配体交换方法成为金原子簇的主要合成方法~4。尺寸聚焦方法的关键点是从多分散的金聚  相似文献   

8.
近年来,精确原子个数的金纳米簇因其在催化、生物医药、传感等领域具有潜在应用而备受关注。本研究中使用金刚烷硫醇(HS-Adam)作为配体制备了Au23(S-Adam)16纳米簇。在室温条件下,通过HS-Adam刻蚀Au23(S-Adam)16纳米簇,得到了纯度较高的Au21(S-Adam)15,其转换率可达20% (根据金原子计算)。并通过紫外可见吸收光谱(UV-Vis),电喷雾(ESI)和基质辅助激光解析飞行时间(MALDI)质谱以及热重分析(TGA)对合成的金纳米簇进行表征。  相似文献   

9.
The coherent vibrational dynamics of gold nanoclusters (NCs) provides important information on the coupling between vibrations and electrons as well as their mechanical properties, which is critical for understanding the evolution from a metallic state to a molecular state with diminishing size. Coherent vibrations have been widely explored in small-sized atomically precise gold NCs, while it remains a challenge to observe them in large-sized gold NCs. In this work, we report the coherent vibrational dynamics of atomically precise Au144(SR)60 NCs via temperature-dependent femtosecond transient absorption (TA) spectroscopy. The population dynamics of Au144(SR)60 consists of three relaxation processes: internal conversion, core–shell charge transfer and relaxation to the ground state. After removing the population dynamics from the TA kinetics, fast Fourier transform analysis on the residual oscillation reveals distinct vibrational modes at 1.5 THz (50 cm−1) and 2 THz (67 cm−1), which arise from the wavepacket motions along the ground-state and excited-state potential energy surfaces (PES), respectively. These results are helpful for understanding the physical properties of gold nanostructures with a threshold size that lies in between those of molecular-like NCs and metallic-state nanoparticles.

The coherent vibrational dynamics of Au144(SR)60 nanoclusters was revealed by temperature-dependent ultrafast transient absorption spectroscopy. Both excited-state and ground-state wavepacket motions contribute to the vibrational coherence.  相似文献   

10.
A systematic study of cross-linking chemistry of the Au(25)(SR)(18) nanomolecule by dithiols of varying chain length, HS-(CH(2))(n)-SH where n = 2, 3, 4, 5, and 6, is presented here. Monothiolated Au(25) has six [RSAuSRAuSR] staple motifs on its surface, and MALDI mass spectrometry data of the ligand exchanged clusters show that propane (C3) and butane (C4) dithiols have ideal chain lengths for interstaple cross-linking and that up to six C3 or C4 dithiols can be facilely exchanged onto the cluster surface. Propanedithiol predominately exchanges with two monothiols at a time, making cross-linking bridges, while butanedithiol can exchange with either one or two monothiols at a time. The extent of cross-linking can be controlled by the Au(25)(SR)(18) to dithiol ratio, the reaction time of ligand exchange, or the addition of a hydrophobic tail to the dithiol. MALDI MS suggests that during ethane (C2) dithiol exchange, two ethanedithiols become connected by a disulfide bond; this result is supported by density functional theory (DFT) prediction of the optimal chain length for the intrastaple coupling. Both optical absorption spectroscopy and DFT computations show that the electronic structure of the Au(25) nanomolecule retains its main features after exchange of up to eight monothiol ligands.  相似文献   

11.
We report two synthetic routes for concurrent formation of phenylmethanethiolate (‐SCH2Ph)‐protected Au20(SR)16 and Au24(SR)24 nanoclusters in one‐pot by kinetic control. Unlike the previously reported methods for thiolate‐protected gold nanoclusters, which typically involve rapid reduction of the gold precursor by excess NaBH4 and subsequent size focusing into atomically monodisperse clusters of a specific size, the present work reveals some insight into the kinetic control in gold–thiolate cluster synthesis. We demonstrate that the synthesis of ‐SCH2Ph‐protected Au20 and Au24 nanoclusters can be obtained through two different, kinetically controlled methods. Specifically, route 1 employs slow addition of a relatively large amount of NaBH4 under slow stirring of the reaction mixture, while route 2 employs rapid addition of a small amount of NaBH4 under rapid stirring of the reaction mixture. At first glance, these two methods apparently possess quite different reaction kinetics, but interestingly they give rise to exactly the same product (i.e., the coproduction of Au20(SCH2Ph)16 and Au24(SCH2Ph)20 clusters). Our results explicitly demonstrate the complex interplay between the kinetic factors that include the addition speed and amount of NaBH4 solution as well as the stirring speed of the reaction mixture. Such insight is important for devising synthetic routes for different sized nanoclusters. We also compared the photoluminescence and electrochemical properties of PhCH2S‐protected Au20 and Au24 nanoclusters with the PhC2H4S‐protected counterparts. A surprising 2.5 times photoluminescence enhancement was observed for the PhCH2S‐capped nanoclusters when compared to the PhC2H4S‐capped analogues, thereby indicating a drastic effect of the ligand that is merely one carbon shorter.  相似文献   

12.
Understanding the origin and structural basis of the photoluminescence (PL) phenomenon in thiolate-protected metal nanoclusters is of paramount importance for both fundamental science and practical applications. It remains a major challenge to correlate the PL properties with the atomic-level structure due to the complex interplay of the metal core (i.e. the inner kernel) and the exterior shell (i.e. surface Au(i)-thiolate staple motifs). Decoupling these two intertwined structural factors is critical in order to understand the PL origin. Herein, we utilize two Au28(SR)20 nanoclusters with different –R groups, which possess the same core but different shell structures and thus provide an ideal system for the PL study. We discover that the Au28(CHT)20 (CHT: cyclohexanethiolate) nanocluster exhibits a more than 15-fold higher PL quantum yield than the Au28(TBBT)20 nanocluster (TBBT: p-tert-butylbenzenethiolate). Such an enhancement is found to originate from the different structural arrangement of the staple motifs in the shell, which modifies the electron relaxation dynamics in the inner core to different extents for the two nanoclusters. The emergence of a long PL lifetime component in the more emissive Au28(CHT)20 nanocluster reveals that its PL is enhanced by suppressing the nonradiative pathway. The presence of long, interlocked staple motifs is further identified as a key structural parameter that favors the luminescence. Overall, this work offers structural insights into the PL origin in Au28(SR)20 nanoclusters and provides some guidelines for designing luminescent metal nanoclusters for sensing and optoelectronic applications.

Two Au28(SR)20 nanoclusters with an identical core but different shells exhibit a ∼15-fold difference in photoluminescence.  相似文献   

13.
The transition from molecular to plasmonic behaviour in metal nanoparticles with increasing size remains a central question in nanoscience. We report that the giant 246‐gold‐atom nanocluster (2.2 nm in gold core diameter) protected by 80 thiolate ligands is surprisingly non‐metallic based on UV/Vis and femtosecond transient absorption spectroscopy as well as electrochemical measurements. Specifically, the Au246 nanocluster exhibits multiple excitonic peaks in transient absorption spectra and electron dynamics independent of the pump power, which are in contrast to the behaviour of metallic gold nanoparticles. Moreover, a prominent oscillatory feature with frequency of 0.5 THz can be observed in almost all the probe wavelengths. The phase and amplitude analysis of the oscillation suggests that it arises from the wavepacket motion on the ground state potential energy surface, which also indicates the presence of a small band‐gap and thus non‐metallic or molecular‐like behaviour.  相似文献   

14.
[reaction: see text] Disulfides bearing (R)-1,1'-bi-2-naphthol ((R)-BINOL) moieties at each terminal position have been successfully introduced on the surface of Au cluster. Ti-BINOLate complex generated from the obtained monolayer-protected Au cluster (MPC) promoted catalytic asymmetric alkylation of benzaldehyde with Et(2)Zn to afford the adduct in up to 98% yield with 86% ee. After completion of the reaction, the BINOL-functionalized MPC was easily recovered.  相似文献   

15.
New approaches to electrospray ionization mass spectrometry (ESI-MS)-with exact compositional assignments-of small (Au25) nanoparticles with uniform and mixed protecting organothiolate monolayers are described. The results expand the scope of analysis and reveal a rich chemistry of ionization behavior. ESI-MS of solutions of phenylethanethiolate monolayer-protected gold clusters (MPCs), Au25(SC2Ph)18, containing alkali metal acetate salts (MOAc) produce spectra in which, for Na+, K+, Rb+, and Cs+ acetates, the dominant species are MAu25(SC2Ph)182+ and M2Au25(SC2Ph)182+. Li+ acetates caused ligand loss. This method was extended to the analysis of Au25 MPCs with mixed monolayers, where thiophenolate (-SPh), hexanethiolate (-SC6), or biotinylated (-S-PEG-biotin) ligands had been introduced by ligand exchange. In negative-mode ESI-MS, no added reagents were needed in order to observe Au25(SC2Ph)18- and to analyze mixed monolayer Au25 MPCs prepared by ligand exchange with 4-mercaptobenzoic acid, HSPhCOOH, which gave spectra through deprotonation of the carboxylic acids. Adducts of tetraoctylammonium (Oct4N+) with -SPhCOO- sites were also observed. Mass spectrometry is the only method that has demonstrated capacity for measuring the exact distribution of ligand-exchange products. The possible origins of the different Au25 core charges (1-, 0, 1+, 2+) observed during electrospray ionization are discussed.  相似文献   

16.
The electronic structure of the cubo-octahedral Au13 cluster was investigated within a self-consistent molecular-orbital Slater-type-orbital framework. The scalar relativistic calculated density of states (DOS) for the gold cluster under consideration show relatively similar features to those obtained experimentally or theoretically earlier calculated by fully relativistic methods. © 1997 John Wiley & Sons, Inc.  相似文献   

17.
We discuss the electronic structure, bonding and physical properties of the gold cluster compound Au55(PPh3)12Cl6. Results from our experimental measurements, including EXAFS, specific heat, Mössbauer, UV-visible and photoelectron spectroscopy, are combined with those of other work to form a consistent physical picture of the system. The bonding in Au55(PPh3)12Cl6 is much more delocalised and non-directional than in smaller gold cluster molecules. The Au55 cluster exhibits a substantial degree of metallic bonding, while displaying some of the characteristics of a discrete energy level spectrum.  相似文献   

18.
19.
20.
Optical absorption of a gold nanocluster of 102 Au atoms protected by 44 para-mercaptobenzoic acid (p-MBA) ligands is measured in the range of 0.05-6.2 eV (mid-IR to UV) by a combination of several techniques for purified samples in solid and solution phases. The results are compared to calculations for a model cluster Au(102)(SMe)(44) based on the time-dependent density functional theory in the linear-response regime and using the known structure of Au(102)(p-MBA)(44). The measured and calculated molar absorption coefficients in the NIR-vis region are comparable, within a factor of 2, in the absolute scale. Several characteristic features are observed in the absorption in the range of 1.5-3.5 eV. The onset of the electronic transitions in the mid-IR region is experimentally observed at 0.45 ± 0.05 eV which compares well with the lowest calculated transition at 0.55 eV. Vibrations in the ligand layer give rise to fingerprint IR features below the onset of low-energy metal-to-metal electronic transitions. Partial exchange of the p-MBA ligand to glutathione does not affect the onset of the electronic transitions, which indicates that the metal core of the cluster is not affected by the ligand exchange. The full spectroscopic characterization of the Au(102)(p-MBA)(44) reported here for the first time gives benchmarks for further studies of manipulation and functionalization of this nanocluster to various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号