首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The product isolated from the reaction of (μ-H)2Os3(CO)9(PPh3) with ethylene is shown to be the ethylidene complex (μ-H)2Os3(CO)9(PPh3)(μ-CHCH3) (1) rather than the ethylene complex (μ-H)(H)Os3(CO)9(PPh3)(C2H4), as previously claimed. The characterization of 1 is based on a combination of 1H and 13C NMR results. The 1H NMR data (δ 6.84 (1 HD), 2.53 (3 HC), J(CD) = 7.4 Hz) establish the presence of the ethylidene moiety, whereas detailed analysis of the 1-D and 2-D 13C NMR spectra of 13CO-enriched 1 indicates the relative positions of the ethylidene, hydride, and phosphine ligands on the triosmium framework.  相似文献   

2.
Detailed procedures for the syntheses of Os(CO)2(PPh3)3, Os(CO)(CNR)-(PPh3)3 (R = p-tolyl), Os(CO)(CS)(PPh3)3 and Os(CS)(CNR)(PPh3)3, together with the derived complexes Os(CO)2(CS)(PPh3)2, Os(CO)(CS)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CS)(PPh3)2, Os(η2CS2)(CO)2-(PPh3)2, Os(η2CS2)(CO)(CS)(PPh3)2, Os(η2-CS2)(CO)(CNR)(PPh3)2, Os(η2PhC2Ph)(CO)2(PPh3)2 and OsH(C2Ph)(CO)2(PPh3)2 are described.  相似文献   

3.
The reaction of [(CO)PPh3)2Re(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)] (2) with HBF4-Me2O generates [(CO)PPh3)2Re(μ- H)2(μ,η12HNCHPh)Ru(PPh3)2(PhCN)][BF4] (3). Monitoring the reaction by NMR spectroscopy shows the intermediate formation of [(CO)(PPh3)2 HRe(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)][BF4] (4). Attempted reduction of the imine ligand by a nucleophile (H or CN) failed, regenerating 2. Under dihydrogen at 50 atm, 3 is slowly transformed into [(CO)(PPh3)2HRe(μ-H)3Ru(PPh3)2(PhCN)][BF4] (5) with liberation of benzyl amine.  相似文献   

4.
Structures of non metal-metal bonded phosphido-bridged heterobimetallic complexes, including CpFe(CO)2(μ-PPh2)W(CO)5 (1-W) and metal-metal bonded CpFe(CO)(μ-CO)(μ-PPh2)W(CO)4 (2), were determined by a single crystal X-ray diffraction study. In 1-W, the long distance between Fe and W indicates no metal-metal bond to exist. In 2, a Fe---W bond with bond length 2.851 Å and a semibridging carbonyl with W---C---O angle 153° were observed. Mössbauer spectra of 1-W and 2 were taken at 77 K. Isomer shifts of 1-W and 2 were − 0.0203 mm s−1 and 0. 1917 mm s−1 respectively.  相似文献   

5.
The reaction of Pt(PPh3)n (n = 3 or 4) with [(CF3)3Ge]2Hg or (CF3)3GeHgPt(PPh3)2Ge(CF3)3 (I) gives a stable diplatinum complex [(CF3)3GePt(PPh3)2]2Hg (II). X-Ray analysis has established that compound II contains a Ge---Pt---Hg---Pt---Ge chain of C2 symmetry. Both of the Pt atoms have distorted square-planar coordinations. The bond lengths are: Pt---Hg, 2.630(2) and 2.665(2) Å; Ge---Pt, 2.410(4) and 2.407(4) Å.

Compound II reacts with dihydrogen in THF solution under mild conditions to give mercury and the hydride (CF3)3GePt(PPh3)2H. On interaction of II with R2Hg organomercurials (R = Cl, Et, GeEt3, Ge(CF3)3, Ge(C6F5)3) an unknown reaction takes place: Pt(PPh3)2 moieties migrate from the polymetallic grouping into the substrate with the formation of the corresponding RHgPt(PPh3)2R complexes or their demercuration products, R2Pt(PPh3);, (R = Cl, Et). The latter react further with complex I formed in the first step of the process to give Hg and (CF3)3GePt(PPh3)2R. The reaction schemes are discussed.  相似文献   


6.
Under weak UV irradiation (flux: 2.4 mmol hv/h) the activity of the hydrogenation catalyst IrCl(CO)(PPh3)2 is increased by a factor up to 40. Reactive intermediates are formed in reversible and irreversible steps. Once the active intermediate is produced in the irreversible step fast hydrogenation can be carried out even in the dark.  相似文献   

7.
8.
The new complex Ru3(CO)9(PPh2H)3 (I) was prepared by the direct thermal reaction of Ru3(CO)12 with PPh2 H and was spectroscopically characterized. Irradiation of I with λ ≥ 300 nm leads to the formation of Ru2(μ-PPh2)2(CO)6 (II) and three new phosphido-bridged complexes, Ru3(μ-H)2(μ-PPh2)2(CO)8 (III), Ru3(μ-H)2(μ-PPh2)2(CO)7(PPh2H) (IV) and Ru3(μ-H)(μ-PPh2)3(CO)7 (V). These complexes have been characterized spectroscopically and Ru3 (μ-H)(μ-PPh2)3(CO)7 by a complete single crystal X-ray structure determination. It crystallizes in the space group P21/n with a 20.256(3), b 22.418(6), c 20.433(5) Å, β 112.64(2)°, V 8564(4) Å3, and Z = 8. Diffraction data were collected on a Syntex P21 automated diffractometer using graphite-monochromatized Mo-Kα radiation, and the structure was refined to RF 4.76% and RwF 5.25% for the 8,847 independent reflections with F0 > 6σ(F0). The structure consists of a triangular array of Ru atoms with seven terminal carbonyl ligands, three bridging diphenylphosphido ligands which bridge each of the RuRu bonds, and the hydride ligand which bridges one RuRu bond. Complex IV was also shown to give V upon photolysis and is thus an intermediate in the photoinduced formation of V from I.  相似文献   

9.
Reaction of the Et3NH+ salts of the [(μ-RS)(μ-CO)Fe2(CO)6] anions (R=But, Ph or PhCH2) with (μ-S2)Fe2(CO)6 gives reactive intermediates [(μ-RS)(μ-S){Fe2(CO)6}24-S)]. Reactions of the latter with alkyl halides, acid chlorides and Cp(CO)2FeI have been studied. X-Ray structure of (μ-ButS)(μ-PhCH2S)[Fe2(CO)6]24-S) was determined.  相似文献   

10.
The anion [(μ-H)Os3(CO)11] reacts with dioxygen in solution to give a yellow species which further reacts with Os6(CO)18 to yield [(μ-H)Os3(CO)10.(/gm2-O2C).Os6(CO)17]. The structure of the oxygen intermediate is proposed, and a mechanism of the reaction suggested.  相似文献   

11.
A high-yield synthesis of trans-RuCl2(CS)(H2O)(PPh3)2 from RuCl2(PPh3)3 and CS2 is described. The coordinated water molecule is labile, and introduction of CNR (R  p-toyl or p-chlorophenyl) leads to yellow trans-RuCl2(CS)(CNR)(PPh3)2, which isomerises thermally to colourless cis-RuCl2(CS)(CNR)(PPh3)2. Reaction of AgClO4 with cis-RuCl2(CS)(CNR)(PPh3)2 gives [RuCl(CS)(CNR)(H2O)(PPh3)2]+, from which [RuCl(CS)(CO)(CNR)(PPh3)2]+ and [RuCl(CS)(CNR)2(PPh3)2]+ are derived. Reaction of trans-RuCl2(CS)(H2O)(PPh3)2 with sodium formate gives Ru(η2-O2CH)Cl(CS)(PPh3)2, which undergoes decarboxylation in the presence of (PPh3) to give RuHCl(CS)(PPh3)3. Ru(η2-O2CH)H(CS)(PPh3)2 and Ru(η2-O2CMe)-H(CS)(PPh3)2 are also described.  相似文献   

12.
Phosphines react with butterfly tetranuelear nitrido-iron clusters, [Fe4N(CO)12] and [Fe4N(CO)11(NO)], to give mono- and di-substituted complexes. X-Ray analyses of the title compounds showed that the phosphine ligands are bound to the wing-tip atoms.  相似文献   

13.
Treatment of ruthenium complexes [CpRu(AN)3][PF6] (1a) (AN=acetonitrile) with iron complexes CpFe(CO)2X (2a–2c) (X=Cl, Br, I) and CpFe(CO)L′X (6a–6g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Cl, Br, I) in refluxing CH2Cl2 for 3 h results in a triple ligand transfer reaction from iron to ruthenium to give stable ruthenium complexes CpRu(CO)2X (3a–3c) (X=Cl, Br, I) and CpRu(CO)L′X (7a–7g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Br, I), respectively. Similar reaction of [CpRu(L)(AN)2][PF6] (1b: L=CO, 1c: P(OMe)3) causes double ligand transfer to yield complexes 3a–3c and 7a–7h. Halide on iron, CO on iron or ruthenium, and two acetonitrile ligands on ruthenium are essential for the present ligand transfer reaction. The dinuclear ruthenium complex 11a [CpRu(CO)(μ-I)]2 was isolated from the reaction of 1a with 6a at 0°C. Complex 11a slowly decomposes in CH2Cl2 at room temperature to give 3a, and transforms into 7a by the reaction with PMe3.  相似文献   

14.
The preparation and properties as well as some reactions of a series of arylcarbonylbis(triphenylphosphine)iridium(I) complexes [Ir(Ar)(CO)(PPh3)2] (Ar = C6H5, C6F5, 2-C6H4CH3, 3-C6H4CH3, 4-C6H4CH3, 2-C6H4OCH3, 2,6-C6H3-(OCH3)2, 4-C6H4N(CH3)2, 3-C6H4Cl, 4-C6H4Cl, 4-C6H4Cl, 3-C6H4CF3, 4-C6H4CF3) are described, and the most important IR data as well as the 31P NMR parameters of these, without exception trans-planar, compounds are given.

Some of the complexes react with molecular oxygen to form well defined dioxygen adducts [Ir(Ar)(O2)(CO)(PPh3)2] (Ar = C6H5, 3-C6H4CH3, 4-C6H4CH3). Complexes with ortho-substituted aryl ligands are not oxygenated. This effect is referred to as a steric shielding of the metal center by the corresponding ortho-substituents. With SO2 the similar irreversible addition compound [Ir(4-C6H4CH3)-(SO2)(CO)(PPh3)2] is obtained. Sulfur dioxide insertion into the Ir---C bond cannot be observed.

The first step of the reaction between [Ir(4-C6H4CH3)(CO)(PPh3)2] and hydrogen chloride involves an oxidative addition of HCl to give [Ir(H)(Cl)(4-C6-H4CH3)(CO)(PPh3)2]. Ir---C bond cleavage by reductive elimination of toluene from the primary adduct does not occur except at elevated temperature.  相似文献   


15.
The reaction of [Ru(CO)2(PPh3)3] (1) with o-styryldiphenylphophine (SP) (2) gave [Ru(CO)2(PPh3)(SP)] (3) in 83% yield. This styrylphosphine ruthenium complex 3 can also be synthesized by the reaction of [Ru(p-MeOC6H4NN)(CO)2(PPh3)2]BF4 (4) with NaBH4 and 2 in 50% yield. When “Ru(CO)(PPh3)3” generated by the reaction of [RuH2(CO)(PPh3)3] (8) with trimethylvinylsilane reacted with 2, [Ru(CO)(PPh3)2(SP)] (10) was produced in moderate yield as an air sensitive solid. The spectral and X-ray data of these complexes revealed that the coordination geometries around the ruthenium center of both complexes corresponded to a distorted trigonal bipyramid with the olefin occupying the equatorial position and the C-C bonding in the olefin moiety in 3 and 10 contained a significant contribution from a ruthenacyclopropane limiting structure. Complexes 3 and 10 showed catalytic activity for the hydroamination of phenylacetylene 11 with aniline 12. Ruthenium complex 3 in the co-presence of NH4PF6 or H3PW12O40 proves to be a superior catalyst system for this hydroamination reaction. In the case of the reaction using H3PW12O40 as an additive, ketimines (13) was obtained in 99% yield at a ruthenium-catalyst loading of 0.1 mol%. Some aniline derivatives such as 4-methoxy, 4-trifluoromethyl-, and 4-bromoanilines can also be used in this hydroamination reaction.  相似文献   

16.
The reactions of [RuHCl(CO)(PPh3)3] and [(C6H6)RuCl2]2 with 2-benzoylpyridine have been examined, and two novel ruthenium(II) complexes – [RuCl(CO)(PPh3)2(C5H4NCOO)] and [RuCl2(C12H9NO)2] – have been obtained. The compounds have been studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The molecular orbital diagrams of the complexes have been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the compounds have been calculated with the time-dependent DFT method, and the UV–Vis spectra of the compounds have been discussed on this basis.  相似文献   

17.
FTIR studies of the thermal and photochemical reactions of Os(N(O)H)(CO)Cl2(PPh3)2 (1) are described. Though 1 is relatively stable, it readily reacts when irradiated to form multiple products, including a metal–carbonyl species and N2O, the decomposition product of HNO. The relative yields of products varied depending on whether or not excess CO was present. A model is presented that includes initial photochemical release of HNO from 1 as a significant but not exclusive photoreaction.  相似文献   

18.
The compound [(μ-H)3Re3(CO)8{(EtO)2POP(OEt)2}2] crystallises in the monoclinic space group P21/c with a 18.053(6), b 16.211(5), c 14.800(3) Å, β = 102.41(2)°, and Z = 4. Simultaneous refinement of a single parameter set to fit 3212 X-Ray (sin θ/λ) > 0.352 Å−1 and 1480 neutron data has led to final weighted residuals Rw(F) of 0.096 (X-Ray) and 0.095 (neutron). The molecule exhibits noncrystallographic C2 symmetry, with two edges of the Re3 triangle bridged by (OEt)2POP(OEt)2 ligands. The hydride ligands lie close to the trimetal plane with each hydride bridging an Re---Re vector. Average molecular parameters involving the hydride ligands are Re---H 1.812(17), Re---Re 3.282(17) Å, Re---H---Re 130(3) and H---Re---H 107.6(27)/dg. All eight carbonyl ligands are terminal, the ligand polyhedron being derived from that in H3Re3(CO)12 by substitution of four axial carbonyls by two bidentate phosphite ligands.  相似文献   

19.
Methylpalladium(II) dithiolate complexes of the type [PdMe(SS)(ER3] (SS = S2 CNR2 (R = Me or Et), S2COEt, S2P(OR)2 (R = Et, nPr, iPr), S2PPh2; ER3 = PMePh2, PPh3, AsPh3) have been synthesized by the reaction of [Pd2Me2(μ-Cl)2(PMePh2)2] with sodium/potassium/ammonium salts of the dithio acid or by treatment of [PdMeCl(cod)] with ER3 followed by sodium/potassium/ammonium salts of the dithio ligand. All the complexes were characterized by elemental analysis, IR and nuclear magnetic resonance (1H, 31P) data.  相似文献   

20.
Reaction between Os[B(OEt)2]Cl(CO)(PPh3)2 and 1,2-ethanediol in the presence of Me3SiCl (1 equivalent) leads to the tethered boryl complex, Cl(CO)(PPh3)2 (1), in which one ethoxy substituent on the boryl ligand is exchanged with one hydroxy group of the 1,2-ethanediol leaving the other OH group available to coordinate to osmium, so giving a six coordinate complex. This formulation is confirmed by crystal structure determination. The same reactants, but with 2 equivalents of Me3SiCl, lead to the yellow, coordinatively unsaturated complex, OsCl(CO)(PPh3)2 (2). Complex (2) adds CO to give OsCl(CO)2 (PPh3)2 (3). Crystal structure determinations of 2 and 3 reveal a very marked difference in the Os-B distances found in the five coordinate complex 2 (2.043(4) Å) and the six coordinate complex 3 (2.179(7) Å). In a reaction similar to that used for forming 2 but with 1,3-propanediol replacing 1,2-ethanediol, the product is OsCl(CO)(PPh3)2 (4). The crystal structure for 4 is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号