首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper contributes to the methodology of measuring pK values and ionic mobilities by capillary zone electrophoresis by introducing the principle of constant ionic strength and minimum interaction of analytes with counterionic components and presenting a standard system of cationic buffers for measurements of weak bases. The system is designed so that all buffers comprise the same concentration of Cl present as the only counter anion. This minimizes problems caused by interactions between the counterion and the analytes which may otherwise bring biased values of obtained effective mobilities. Further, the buffer system provides constant and accurately known ionic strength for an entire set of measurements. When additionally all measurements are performed with constant Joule heating, one correction for ionic strength and temperature is then needed for the obtained set of experimental data. This considerably facilitates their evaluation and regression analysis as the corrections for ionic strength and Joule heating need not be implemented in the computation software and may be applied only once to the final regression results. An experimental example of the proposed methodology is presented and the reliability and the advantages of the proposed system are shown, where the known problematic groups of amines and pyridine were measured with high accuracy and without any notice of anomalous behavior.  相似文献   

2.
Nitromethane has several properties that make it an interesting solvent for capillary electrophoresis especially for lipophilic analytes that are not sufficiently soluble in water: freezing and boiling points are suitable for laboratory conditions, low viscosity leads to favourable electrophoretic mobilities, or an intermediate dielectric constant enables dissolution of electrolytes. In the present work we investigate the change of electrophoretically relevant analyte properties - mobilities and pKa values - in nitromethane in dependence on the most important experimental conditions determined by the background electrolyte: the ionic strength, I, and the pH. It was found that the mobility decreases with increasing ionic strength (by, e.g. up to 30% from I = 0 to 50 mmol/L) according to theory. An appropriate pH scale is established by the aid of applying different concentration ratios of a buffer acid with known pKa and its conjugate base. The mobility of the anionic analytes (from weak neutral acids) depends on the pH with the typical sigmoidal curve in accordance with theory. The pKa of neutral acids derived from these curves is shifted by as much as 14 pK units in nitromethane compared to water. Both findings confirm the agreement of the electrophoretic behaviour of the analytes with theories of electrolyte solutions. Separation of several neutral analytes was demonstrated upon formation of charged complexes due to heteroconjugation with chloride as ionic constituent of the background electrolyte.  相似文献   

3.
Maynard DK  Vigh G 《Electrophoresis》2001,22(15):3152-3162
The first single-isomer, 14-sulfated beta-cyclodextrin, the sodium salt of heptakis(2-O-methyl-3,6-di-O-sulfo)-beta-cyclodextrin (HMdiSu) has been used to separate 24 pharmaceutical weak base enantiomers in pH 2.5 background electrolytes using capillary electrophoresis. For the weakly binding bases, the cationic effective mobilities decreased, approached zero, and then increased again. For the strongly binding bases, the cationic effective mobilities decreased, became anionic at very low concentrations of HMdiSu, passed an anionic mobility maximum, then decreased again as the HMdiSu concentration was increased. Viscosity corrections according to Walden's rule did not eliminate these unexpected effective mobility extrema. The mobility extrema were rationalized by extending the charged resolving agent migration model (CHARM model) to include ionic strength effects.  相似文献   

4.
Zhu W  Vigh G 《Electrophoresis》2003,24(1-2):130-138
The second member of the single-isomer, sulfated gamma-cyclodextrin family, the sodium salt of octa(6-O-sulfo)-gamma-cyclodextrin (OS) has been synthesized, characterized and used to separate the enantiomers of nonelectrolyte, acidic, basic, and ampholytic analytes by capillary electrophoresis in acidic aqueous background electrolytes. The anionic effective mobilities of the nonelectrolyte and anionic analytes increased with increasing concentration of OS. The effective mobilities of strongly complexing cationic analytes became anionic with very low OS concentrations and passed local anionic effective mobility maxima as the OS concentration, and along with it, the ionic strength, of the background electrolyte increased. The effective mobilities of the weakly binding cationic analytes became only slightly anionic at high OS concentration values and did not show the local anionic effective mobility maxima. For nonelectrolyte analytes, separation selectivities decreased with increasing OS concentration. For cationic analytes, separation selectivities were highest where the effective mobilities of the less mobile enantiomers approached zero. OS proved to be a broadly applicable chiral resolving agent.  相似文献   

5.
Beckers JL  Bocek P 《Electrophoresis》2002,23(12):1942-1946
Multivalent weak acids and bases are useful components of buffers in electrophoresis. The use of such buffers as background electrolytes (BGEs) in capillary zone electrophoresis (CZE) is, however, risky due to the existence of unsafe regions in the analytical window of the separation. This contribution discusses the problems and shows that multivalent weak species in BGEs bring about the same effects as mixtures of two independent co-ions, i.e., the presence of two centers of symmetry in the electropherograms and the existence of a migrating system zone with a mobility in between these two centers of symmetry. The system zone deteriorates the analytical separation and detection of the analytes in its neighborhood. Illustrative experimental examples for both cationic and anionic CZE are shown and related discussion is given. Finally, some basic rules are formulated to avoid the preparation of risky BGEs.  相似文献   

6.
Our understanding of metal ion adsorption to clay minerals has progressed significantly over the past several decades, and theories have been promulgated to describe and predict the impacts of pH, ionic strength, and background solution composition on the extent of adsorption. Studies evaluating the effects of ionic strength on adsorption typically employ a broad range of background electrolyte concentrations. Measurement of pH in these systems can be inaccurate when pH values are measured with liquid junction pH probes calibrated with standard buffers due to changes in the liquid junction potential between standard, low ionic strength (0.05 M) buffers and high ionic strength solutions (>0.1 M). The objective of this research is to determine the extent of the error in pH values measured at high ionic strength, and to develop an approach for accurately measuring pH over a range of ionic strengths using a combined pH electrode. To achieve this objective, the adsorption of cobalt (10(-5) M) onto gibbsite (10 g/L) from various electrolyte solutions (0.01-1 M) was studied. The pH measurements were determined from calibrations with standard buffers and ionic strength corrected buffer calibrations. The results show a significant effect of the aqueous solution background electrolyte anion and ionic strength on pH measurement. The 0.5 and 1 M ionic strength metal ion adsorption edges shifted to lower pH with increasing ionic strength when pH was calibrated with standard buffers whereas no shift in the adsorption edges was observed when calibrated with ionic strength corrected buffers. Therefore, to obtain an accurate pH measurement, pH calibration should contain the same electrolyte and ionic strength as the samples.  相似文献   

7.
Phosphinic pseudopeptides (i.e., peptide isosteres with one peptide bond replaced by a phosphinic acid moiety) were analyzed and physicochemically characterized by capillary zone electrophoresis in the pH range of 1.1-3.2, employing phosphoric, phosphinic, oxalic and dichloroacetic acids as background electrolyte (BGE) constituents. The acid dissociation constant (pK(a)) of phosphinate group in phosphinic pseudopeptides and ionic mobilities of these analytes were determined from the pH dependence of their effective electrophoretic mobilities corrected to standard temperature and constant ionic strength of the BGEs. It was shown that these corrections are necessary whenever precise mobility data at very low pH are to be determined. Additionally, it was found that the ionic mobilities of the phosphinic pseudopeptides and pK(a) of their phosphinate group are affected by the BGE constituent used. The variability of migration behavior of the pseudopeptides can be attributed to their ion-pairing formation with the BGE components.  相似文献   

8.
Koval D  Kasicka V  Zusková I 《Electrophoresis》2005,26(17):3221-3231
The effect of ionic strength of the background electrolyte (BGE) composed of tris(hydroxymethyl)aminomethane (Tris) and acetic acid on the electrophoretic mobility of mono-, di- and trivalent anions of aliphatic and aromatic carboxylic and sulfonic acids was investigated by capillary zone electrophoresis (CZE). Actual ionic mobilities of the above anions were determined from their CZE separations in Tris-acetate BGEs of pH 8.1 to 8.2 in the 3 to 100 mM ionic strength interval at constant temperature (25 degrees C). It was found that the ionic strength dependence of experimentally determined actual ionic mobilities does not follow the course supposed by the classical Onsager theory. A steeper decrease of actual ionic mobilities with the increasing ionic strength of BGE and a higher estimated limiting mobility of the anions than that found in the literature could be attributed to the specific behavior of the Tris-acetate BGEs. Presumably, not only a single type of interaction of anionic analytes with BGE constituents but rather the combination of effects, such as ion association or complexation equilibria, seems to be responsible for the observed deviation of the concentration dependence of the actual ionic mobilities from the Onsager theory. Additionally, several methods for the determination of limiting ionic mobilities from CZE measured actual ionic mobilities were evaluated. It turned out that the determined limiting ionic mobilities significantly depend on the calculation procedure used.  相似文献   

9.
Porras SP  Kenndler E 《Electrophoresis》2004,25(17):2946-2958
A comprehensive investigation of a number of aspects when using formamide as background electrolyte solvent in capillary zone electrophoresis was presented. It included (i) the change of the ion mobility with ionic strength, (ii) the influence of the ionic strength on diffusion coefficients, and (iii) on the separation efficiency expressed by the maximum reachable plate numbers (when only longitudinal diffusion contributed to zone broadening), (iv) the effect of the solvent on pKa values (taken from the literature) of neutral and cation acids, (v) the establishment of the a pH scale in formamide by dissolving acids with known pKa values and their salts at defined proportion (thus circumventing the problem of calibrating the pH meter), (vi) the agreement between the experimentally derived and the theoretical dependence of the effective mobility on pH, (vii) the uptake of water of this hygroscopic solvent from the humidity of the environment and its consequence to the ion mobilities, pKa values, and the chemical stability of the solvent (e.g., hydrolysis), and finally (viii) the use of conductivity and indirect UV absorption to enable detection of analytes below the optical cutoff of formamide.  相似文献   

10.
Gebauer P  Bocek P 《Electrophoresis》2000,21(14):2809-2813
Phosphate buffer is frequently used as background electrolyte in capillary electrophoresis. It can cover a broad range of pH due to the three dissociation constants (pK1 = 2.0, pK2 = 7.2, and pK3 = 11.0) of phosphoric acid and because it is UV-light transparent. This contribution brings a theoretical study of the analytical separation performance (sample window, regions of peak symmetry, regions of fronting and tailing peaks) of phosphate buffer, serving as a model of buffering with multivalent weak acids. The study is based on the use of peak shape diagrams and covers the pH range 2.55-11.43. New important general knowledge has been revealed that single multivalent weak acids mimic the performance of background electrolytes with multiple coanionic species for anionic analyses. It is shown that simple phosphate buffers prepared by mixing phosphoric acid and potassium hydroxide may exhibit up to two regions of symmetry, of fronting as well as of tailing zones, on the mobility scale inside the sample window. Moreover they may exhibit a "schizophrenic" region of enormous electromigration dispersion.  相似文献   

11.
A novel procedure for the determination of stability constants in systems with neutral analytes and charged complexation agents by affinity capillary electrophoresis was established. This procedure involves all necessary corrections to achieve precise and reliable data. Temperature, ionic strength, and viscosity corrections were applied. Based on the conductivity measurements, the average temperature of the background electrolyte in the capillary was kept at the constant value of 25°C by decreasing the temperature of the cooling medium. The viscosity correction was performed using the viscosity ratio determined by an external viscosimeter. The electrophoretical measurements were performed, at first, at constant ionic strength. In this case, the increase of ionic strength caused by increasing complexation agent concentration was compensated by changing of the running buffer concentration. Subsequently the dependence of the analyte effective mobility on the complexation agent concentration was measured without the ionic strength compensation (at variable ionic strength). The new procedure for determination of the stability constants even from such data was established. These stability constants are in a very good agreement with those obtained at the constant ionic strength. The established procedure was applied for determination of the thermodynamic stability constants of (R, R)-(+)- and (S, S)-(-)-hydrobenzoin and R- and S-(3-bromo-2-methylpropan-1-ol) complexing with 6-monodeoxy-6-mono(3-hydroxy)propylamino-β-cyclodextrin hydrochloride.  相似文献   

12.
Thermodynamic acidity constants (acid or acid-base dissociation constants, sometimes called also as ionization constants) and limiting ionic mobilities (both of them at defined temperature, usually 25°C) are the fundamental physicochemical characteristics of a weak electrolyte, that is, weak acid or weak base or ampholyte. We introduce a novel method for determining the data of a weak electrolyte by the nonlinear regression of effective electrophoretic mobility versus buffer composition dependence when measured in a set of BGEs with various pH. To correct the experimental data for zero ionic strength we use the extended Debye-Hückel model and Onsager-Fuoss law with no simplifications. Contrary to contemporary approaches, the nonlinear regression is performed on limiting mobility data calculated by PeakMaster's correction engine, not on the raw experimental mobility data. Therefore, there is no requirement to perform all measurements at a constant ionic strength of the set of BGEs. We devised the computer program AnglerFish that performs the necessary calculations in a user-friendly fashion. All thermodynamic pKa values and limiting electrophoretic mobilities for arbitrarily charged substances having any number of ionic forms are calculated by one fit. The user input consists of the buffer composition of the set of BGEs and experimentally measured effective mobilities of the inspected weak electrolyte.  相似文献   

13.
K Shimura  K Kasai 《Electrophoresis》1989,10(4):238-242
The influence of a soluble anionic polymer on electrophoresis of proteins was studied in relation to the nonspecific ionic effect of an affinophore on application to affinophoresis. Zone electrophoresis of proteins was carried out in agarose gel in the presence of succinyl-poly-L-lysine (degree of polymerization, 120) by using three electrophoresis buffers differing in ionic strength (0.06, 0.12 and 0.18) and pH (7.0 and 7.9). Proteins migrated as distinct single bands even in the presence of the polymer. The mobility of cationic proteins towards the cathode was first decreased and then increased towards the anode as the polymer concentration increased, while that of anionic proteins was not affected. The dependence of the apparent mobility changes of the proteins on the concentration of the polymer was treated quantitatively in the same way as affinity electrophoresis. The extent of the ionic interaction between a cationic protein and the polymer could be estimated as an apparent dissociation constant. It greatly depended on the ionic strength of the electrophoresis buffer. Except for the extremely cationic proteins such as lysozyme, the ionic interaction with up to 0.1 mM of the polymer could be practically suppressed by the use of 0.1 M sodium phosphate buffer (pH 7.0).  相似文献   

14.
The current work is focused on exploring the effect of buffer cation type and its concentration on retention of amino acids, dipeptides and their blocked analogues on two stationary phases, i.e., bare silica and amide-based in hydrophilic interaction liquid chromatography. Five different buffers of pH 4.0 composed of Tris/acetic acid, triethylamine/acetic acid, ammonium/acetic acid, Li+/acetic acid and Ba2+/acetic acid were used in various concentrations. Interestingly, an increase of the buffer concentration caused increasing, decreasing or stable retention of analytes, according to the cation type in the buffer. The buffers containing barium cations provided the highest retention of all the analytes in comparable mobile phases, i.e., buffers with the same ionic strength and pH on both columns. Moreover, using buffers with barium cation different selectivity for dipeptides was observed. The chromatographic systems with buffers consisting of triethylamine behaved differently compared to others.  相似文献   

15.
A method applying pressure-assisted capillary electrophoresis combined with short-end injection has been developed for the rapid screening of the pKa values of pharmaceuticals. The electrophoretic separation is performed on a short capillary length with short-end injection under an applied pressure, and the effective mobility is measured in a series of 10 different buffers with constant ionic strength (I = 0.05). The application of pressure not only reduces migration times, particularly in lower pH buffers, but also improves the repeatability of effective mobility measurements. The influence of pressure on the effective mobility was investigated at various pH values. It was observed for the first time that an increase in pressure resulted in a slight decrease in the effective mobility when the pH was above the pKa for acidic analytes, whereas an increased effective mobility with increasing pressures was observed when the pH was below the pKa. However, the observed effective mobility shift by the applied pressure did not significantly affect the determined pKa values. The determined pKa values were in good agreement with published data. Furthermore, a stacking condition was applied to increase the sensitivity, and a concentration down to 2 microM could readily be detected with UV detection using a 50 microm I.D. capillary. This technique is particularly suitable for measurement of pKa values for compounds with poor aqueous solubility. The method also omits the commonly used preconditioning steps with sodium hydroxide and water. The exclusion of excessive preconditioning steps and the use of pressure reduces the total cycling analysis time, and makes it possible to determine the pKa in less than 40 min per compound without loss of accuracy.  相似文献   

16.
Thermodynamic acidity constants and limiting ionic mobilities were determined for polyprotic non-chromophore analytes using capillary electrophoresis with capacitively coupled contactless conductivity detection. It was not necessary to work with buffers of identical ionic strength as ionic strength effects on effective electrophoretic mobilities were corrected by modeling during data evaluation (software AnglerFish). The mobility data from capillary electrophoresis coupled to conductivity detection were determined in the pH range from 1.25 to 12.02 with a high resolution (36 pH steps). With this strategy, thermodynamic acidity constants and limiting ionic mobilities for various acidic herbicides were determined, sometimes for the first time. The model analytes included glyphosate, its metabolites, and its acetylated derivates (aminomethyl phosphonic acid, glyoxylic acid, sarcosine, glycine, N-acetyl glyphosate, N-acetyl aminomethyl phosphonic acid, hydroxymethyl phosphonic acid). The obtained data were used in simulations to optimize separations by capillary electrophoresis. Simulations correlated very well to experimental results. With the new method, the separation of glyphosate from interfering components like phosphate in beer samples was possible.  相似文献   

17.
The electrophoretically relevant properties of monoacidic 21 bases (including common drugs) containing aliphatic or aromatic amino groups were determined in methanol as solvent. These properties are the actual mobilities (that of the fully ionised weak bases), and their pKa values. Actual mobilities were measured in acidic methanolic solutions containing perchloric acid. The ionisation constants of the amines were derived from the dependence of the ionic mobilities on the pH of the background electrolyte solution. The pH scale in methanol was established from acids with known conventional pK*a values in this solvent used as buffers, avoiding thus further adjustment with a pH sensitive electrode that might bias the scale. Actual mobilities in methanol were found larger than in water, and do not correlate well with the solvent's viscosity. The pK*a values of the cation acids, HB-, the corresponding form of the base, B, are higher in methanol, whereas a less pronounced shift was found than for neutral acids of type HA. The mean increase (compared to pure aqueous solution) for aliphatic ammonium type analytes is 1.8, for substituted anilinium 1.1, and for aromatic ammonium from pyridinium type 0.5 units. The interpretation of this shift was undertaken with the concept of the medium effect on the particles involved in the acid-base equilibrium: the proton, the molecular base, B, and the cation HB+.  相似文献   

18.
Summary The adsorption of albumin on a commercial, high quality agarose (Sepharose® 6B) was studied in different buffers of low pH (4.00) and low molarity (9–11 mM). Eluents containing 0.025% albumin were introduced onto small gel columns until saturation and the adsorption capacity of the gel in different buffers calculated. Adsorption was high in solutions of monobasic acids. Although cation-exchange interactions between the protein and the gel matrix were found to be influenced essentially by the sodium ion concentration or ionic strength of the buffer, adsorption in cirate buffers is weak compared to that in formate, acetate or propionate buffers of about the same ionic strength (I=0.01).  相似文献   

19.
T Soga  M Imaizumi 《Electrophoresis》2001,22(16):3418-3425
A previously developed capillary zone electrophoresis (CZE) method with indirect UV detection for the simultaneous determination of inorganic and organic anions, amino acids and carbohydrates using 20 mM 2,6-pyridinedicarboxylic acid (PDC) as the background electrolyte was extended to allow determination of 206 anions including those above--mentioned and physiological amino acids, nucleotides, aromatic acids, haloacetic acids, alcohols, phosphorylated saccharides, oxyhalides, metal oxoacids, metal-ethylenediaminetetraacetic acid (EDTA) complexes, forensic anions, Good's buffers and herbicides. Every compound could be analyzed and their electrophoretic mobility determined simply by selecting detection wavelength. This method is simple and universal for anion analysis, and could be readily applied to the simultaneous determination of anionic compounds. In this work, it was used to identify and quantify important anions in sea urchin and sake.  相似文献   

20.
Anionic liposomes can be coated on fused-silica capillaries for electrophoresis in the presence of N-(hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES) as background electrolyte (BGE) solution. In this work, the interaction of various compounds with zwitterionic and anionic phospholipid coatings was studied with HEPES at pH 7.4 as BGE solution. The chromatographic and electrophoretic behavior of three test sample solutions (anionic, cationic, and neutral) was investigated for evaluation of the phospholipid coatings. Our results show that hydrophobic interactions between analytes and the phospholipid coating are important for the migration of charged analytes. In addition, the performances of other piperazine-based buffers, i.e., N-(2-hydroxyethyl)piperazine-N'-(2-hydroxypropanesulfonic acid), piperazine-N,N'-bis(2-ethanesulfonic acid), and piperazine-N,N'-bis(hydroxypropane sulfonic acid), at pH 7.4, as liposome solvent and BGE solution were evaluated and compared with the performance of HEPES at pH 7.4. The anionic liposome solution comprised 80/20 mol% phosphatidylcholine/phosphatidylserine. A simple test solution was selected and the chromatographic and electrophoretic migration behavior of the analytes was evaluated. The results show that, in addition to HEPES, other piperazine-based buffers at pH 7.4 are suitable for coating of fused-silica capillaries with anionic liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号