首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
An analysis of theoretical modeling results of ultrafast kinetics of photoinduced intramolecular charge separation from the second excited singlet state in the dyad Zn-tetraphenylporphyrin-aminonaphthalenediimide (Zn-TPP-ANDI) in a solution of toluene is presented. The calculations are performed within the framework of the stochastic multi-channel model, which includes four electron states (the ground, first and second excited singlet states, the state with charge separation), as well as their vibration sublevels corresponding to the excitation of highfrequency intramolecular vibration modes. A bimodal kinetic curve of population of the state with charge separation observed in experiments is quantitatively reproduced. The absolute yield values of the state with charge separation are determined. The results of the modeling show that intramolecular modes make a significant contribution to the reorganization of low-frequency modes. Quantum chemical calculations were performed, determining the degrees of freedom related to the intramolecular slow motion of nuclei of high amplitude in the dyad Zn-TPPANDI on going from the ground state to the state with charge separation.  相似文献   

2.
An electron donor–acceptor dyad (quaterthiophene–anthraquinone) mediates ultrafast intramolecular photoinduced charge separation and consequent charge recombination when in polar or moderately polar solvents. Alternatively, non-polar media completely impedes the initial photoinduced electron transfer by causing enough destabilization of the charge-transfer state and shifting its energy above the energy of the lowest locally excited singlet state. Furthermore, femtosecond transient-absorption spectroscopy reveals that for the solvents mediating the initial photoinduced electron-transfer process, the charge recombination rates were slower than the rates of charge separation. This behavior of donor–acceptor systems is essential for solar-energy-conversion applications. For the donor–acceptor dyad described in this study, the electron-transfer driving force and reorganization energy place the charge-recombination processes in the Marcus inverted region.  相似文献   

3.
A high potential donor–acceptor dyad composed of zinc porphyrin bearing three meso‐pentafluorophenyl substituents covalently linked to C60, as a novel dyad capable of generating charge‐separated states of high energy (potential) has been developed. The calculated energy of the charge‐separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin–fullerene dyad. Intramolecular photoinduced electron transfer leading to charge‐separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto‐ to nanosecond transient absorption techniques. The high energy stored in the form of charge‐separated states along with its persistence of about 50–60 ns makes this dyad a potential electron‐transporting catalyst to carry out energy‐demanding photochemical reactions. This type of high‐energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light‐to‐fuel products.  相似文献   

4.
The role of π‐conjugated molecular bridges in through‐space and through‐bond electron transfer is studied by comparing two porphyrin–fullerene donor–acceptor (D–A) dyads. One dyad, ZnP–Ph–C60 (ZnP=zinc porphyrin), incorporates a phenyl bridge between D and A and behaves very similarly to analogous dyads studied previously. The second dyad, ZnP–EDOTV–C60, introduces an additional 3,4‐ethylenedioxythienylvinylene (EDOTV) unit into the conjugated bridge, which increases the distance between D and A, but, at the same time, provides increased electronic communication between them. Two essential outcomes that result from the introduction of the EDOTV unit in the bridge are as follows: 1) faster charge recombination, which indicates enhanced electronic coupling between the charge‐separated and ground electronic states; and 2) the disappearance of the intramolecular exciplex, which mediates photoinduced charge separation in the ZnP–Ph–C60 dyad. The latter can be interpreted as a gradual decrease in electronic coupling between locally excited singlet states of D and A when introducing the EDOTV unit into the D–A bridge.  相似文献   

5.
通过"一锅法"多组分偶联反应合成了一种新型磺酰脒基桥连的卟啉-富勒烯化合物ZnP-H-C60. 该化合物具有Z式和E式2种异构体, 其中Z式异构体中含有分子内氢键. 光物理研究结果表明, 2种异构体中的卟啉与富勒烯之间都可以发生光诱导电子转移, 但其相应的电子转移机理却完全不同. 在Z式异构体中, 卟啉或富勒烯被激发后直接发生电荷分离而形成电荷分离态, 其电荷分离机理是通过氢键进行电子传递; 在E式异构体中, 由于卟啉和富勒烯之间存在空间电子相互作用, 被激发后先形成卟啉-富勒烯激基复合物, 再进一步发生电荷分离形成电荷分离态, 电荷分离通过空间电子转移实现.  相似文献   

6.
Chen P  Meyer TJ 《Inorganic chemistry》1996,35(19):5520-5524
Classical theories of electron transfer are modified to take into account the differences between electron transfer in a rigid medium and in a fluid. Intramolecular vibrations and part of the dielectric polarization are assumed to remain dynamic in rigid media while the remaining part of the polarization, arising from dipole reorientations, is frozen. In rigid media, electron transfer occurs with the solvent locked into the dipole orientations of the initial state. This causes an increase in the free energy change and a decrease in the solvent reorganizational energy. It also increases the activation free energy for electron transfer. For photoinduced electron transfer, the analysis is more complex because multiple states are involved. The activation free energy can either be greater or less than in a fluid depending on charge distributions before and after electron transfer. The same analysis can be applied to interconversion between excited states in rigid media.  相似文献   

7.
Porphyrin–fullerene dyads are promising candidates for organic photovoltaic devices. The electron-transfer (ET) properties of the molecular devices depend significantly on the mutual position of the donor and acceptor. Recently, a new type of molecular isomerism (akamptisomerism) has been discovered. In the present study, we explore how photoinduced ET can be modulated by passing from one akamptisomer to another. To this aim, four akamptisomers of the quinoxalinoporphyrin–[60]fullerene complex are selected for computational study. The most striking finding is that, depending on the isomer, the porphyrin unit in the dyad can act as either electron donor or electron acceptor. Thus, the stereoisomeric diversity allows one to change the direction of ET between the porphyrin and fullerene moieties. To understand the effect of akamptisomerism on the photoinduced ET processes, a detailed analysis of initial and final states involved in the ET is performed. The computed rate for charge separation is estimated to be in the region of 1–10 ns−1. The formation of a long-living quinoxalinoporphyrin anion radical species is predicted.  相似文献   

8.
《Chemical physics》2002,275(1-3):243-251
Alternating Langmuir–Blodgett (LB) bilayer structures, consisting of a donor–acceptor (DA) layer of a phytochlorin–fullerene (PF) dyad and a layer of a regioregular poly(3-hexylthiophene) (PHT) polymer were used to study interlayer vectorial photoinduced electron transfer (VPET). As the dyad PF undergoes, under light illumination, an intramolecular ET from the phytochlorin to the fullerene moiety an intralayer VPET takes place in the LB monolayer. When PF was deposited on the PHT layer and excited the second ET took place from the PHT layer to the phytochlorin cation. Thus the PHT layer can act as a secondary electron donor and accompany the primary photoinduced electron transfer in the PF layer by a spontaneous interlayer electron transfer. Important characteristic properties of the VPET bilayer are the longer distance of charge separation (CS) and the longer lifetime of the charge separated state (lifetime from microsecond to second) as compared to VPET of the PF monolayer alone (where the lifetime of CS state was ≈30 ns). The CT measurements were carried out for different molecular orientations and film structures. Models for the multistep photochemical reactions are discussed.  相似文献   

9.
The present paper highlights results of a systematic study of photoinduced electron transfer, where the fundamental aspects of the photochemistry occurring in solutions and in artificially or self-assembled molecular systems are combined and compared. In photochemical electron transfer (ET) reactions in solutions the electron donor, D, and acceptor, A, have to be or to diffuse to a short distance, which requires a high concentration of quencher molecules and/or long lifetimes of the excited donor or acceptor, which cannot always be arranged. The problem can partly be avoided by linking the donor and acceptor moieties covalently by a single bond, molecular chain or chains, or rigid bridge, forming D-A dyads. The covalent combination of porphyrin or phthalocyanine donors with an efficient electron acceptor, e.g. fullerene, has a two-fold effect on the electron transfer properties. Firstly, the electronic systems of the D-A pair result in a formation of an exciplex intermediate upon excitation both in solutions and in solid phases. The formation of the exciplex accelerates the ET rate, which was found to be as fast as >10(12) s(-1). Secondly, the total reorganization energy can be as small as 0.3 eV, even in polar solvents, which allows nanosecond lifetimes for the charge separated (CS) state. Molecular assemblies can form solid heterogeneous, but organized systems, e.g. molecular layers. This results in more complex charge separation and recombination dynamics. A distinct feature of the ET in organized assemblies is intermolecular interactions, which open a possibility for a charge migration both in the acceptor and in the donor layers, after the primary intramolecular exciplex formation and charge separation in the D-A dyad. The intramolecular ET is fast (35 ps) and efficient, but the formed interlayer CS states have lifetimes in microsecond or even second time domain. This is an important result considering possible applications.  相似文献   

10.
An electron-rich perylenediimide-C60 dyad has been prepared to explore a new type of donor-acceptor system. Time-resolved absorption measurements in benzonitrile revealed unambiguous evidence for the formation of a charge-separated state consisting of perylene diimide radical cation and C60 radical anion via photoinduced electron transfer, showing a new class of artificial photosynthetic models in terms of charge separation.  相似文献   

11.
The synthesis and photochemical characterization of two porphyrin-fullerene dyads, two zinc porphyrin-fullerene dyads, and a carotenobuckminsterfullerene are reviewed. In these molecules, the fullerene first excited singlet state may be formed by direct excitation or by singlet-singlet energy transfer from the attached pigment. In polar solvents, the dominant singlet-state decay pathway is photoinduced electron transfer to yield the pigment radical cation and fullerene radical anion. This charge-separated state has a long lifetime relative to the time constant for charge separation. In toluene, in cases where photoinduced electron transfer is slow for thermodynamic reasons, the fullerene singlet state decays by intersystem crossing, and the resulting triplet energy is partitioned between the components of the dyad according to their triplet energies. The results suggest that fullerenes can be valuable components of photochemically active multicomponent molecular systems.  相似文献   

12.
13.
A series of linearly arranged donor-spacer-acceptor (D-S-A) systems 1-3, has been prepared and characterized. These dyads combine an Os(II)bis(terpyridine) unit as the photoactivable electron donor (D), a biphenylene (2) or phenylene-xylylene (3) fragment as the spacer (S), and a N-aryl-2,6-diphenylpyridinium electrophore (with aryl = 4-pyridyl or 4-pyridylium in 1 or 2/3, respectively) as the acceptor (A). Their absorption spectra, redox behavior, and luminescence properties (both at 77 K in rigid matrix and at 298 K in fluid solution) have been studied. The electronic structure and spectroscopic properties of a representative compound of the series (i.e., 2) have also been investigated at the theoretical level, performing Density Functional Theory (DFT)-based calculations. Time-dependent transient absorption spectra of 1-3 have also been recorded at room temperature. The results indicate that efficient photoinduced oxidative electron transfer takes place in the D-S-A systems at room temperature in fluid solution, for which rate constants (in the range 4 × 10(8)-2 × 10(10) s(-1)) depend on the driving force of the process and the spacer nature. In all the D-S-A systems, charge recombination is faster than photoinduced charge separation, in spite of the relatively large energy of the D(+)-S-A(-) charge-separated states (between 1.47 and 1.78 eV for the various species), which would suggest that the charge recombination occurs in the Marcus inverted region. Considerations based on superexchange mechanism suggest that the reason for the fast charge recombination is the presence of a virtual D-S(+)-A(-) state at low energy--because of the involvement of the easily oxidizable biphenylene spacer--which is beneficial for charge recombination via superexchange but unsuitable for photoinduced charge separation. To further support the above statement, we prepared a fourth D-S-A species, 4, analogous to 2 but with a (hardly oxidizable) single phenylene fragment serving as the spacer. For such a species, charge recombination (about 3 × 10(10) s(-1)) is slower than photoinduced charge separation (about 1 × 10(11) s(-1)), thereby confirming our suggestions.  相似文献   

14.
A series of zinc porphyrin–[60]fullerene dyads linked by conformation-constrained tetrasilanes and permethylated tetrasilane have been synthesized for the evaluation of the conformation effect of the tetrasilane linkers on the photoinduced electron transfer. The excited-state dynamics of these dyads have been studied using the time-resolved fluorescence and absorption measurements. The fluorescence of the zinc porphyrin moiety in each dyad was quenched by the electron transfer to the fullerene moiety. The transient absorption measurements revealed that the final state of the excited-state process was a radical ion pair with a radical cation on the zinc porphyrin moiety and a radical anion on the fullerene moiety as a result of the charge separation. The charge separation and charge recombination rates were found to show only slight conformation dependence of the tetrasilane linkers, which is characteristic for the Si-linkages.  相似文献   

15.
A new amide‐linked phthalocyanine‐fullerene dyad ZnPc‐C60 was synthesized and characterized. The photophysical and electrochemical properties of the ZnPc‐C60 dyad were investigated. The fluorescence spectrum and quantum yield in different solvents showed the occurrence of photoinduced electron transfer (PET) from the singlet excited ZnPc to C60, which was further confirmed by nanosecond transient absorption spectra and cyclic voltammetry data. The free energy change for charge separation (ΔGCS) was estimated to be exothermic with ?0.51 eV, which favored the formation of charge‐separation state. The PET from ZnPc to C60 in ZnPc‐C60 made the dyad exhibit stronger reverse saturable absorption performance compared with C60 and the control sample in the Z‐scan experiments, which indicated the synergistic effect of two active moieties in the dyad.  相似文献   

16.
To harvest energy from the near‐infrared (near‐IR) and infrared (IR) regions of the electromagnetic spectrum, which constitutes nearly 70 % of the solar radiation, there is a great demand for near‐IR and IR light‐absorbing sensitizers that are capable of undergoing ultrafast photoinduced electron transfer when connected to a suitable electron acceptor. Towards achieving this goal, in the present study, we report multistep syntheses of dyads derived from structurally modified BF2‐chelated azadipyrromethene (ADP; to extend absorption and emission into the near‐IR region) and fullerene as electron‐donor and electron‐acceptor entities, respectively. The newly synthesized dyads were fully characterized based on optical absorbance, fluorescence, geometry optimization, and electrochemical studies. The established energy level diagram revealed the possibility of electron transfer either from the singlet excited near‐IR sensitizer or singlet excited fullerene. Femtosecond and nanosecond transient absorption studies were performed to gather evidence of excited state electron transfer and to evaluate the kinetics of charge separation and charge recombination processes. These studies revealed the occurrence of ultrafast photoinduced electron transfer leading to charge stabilization in the dyads, and populating the triplet states of ADP, benzanulated‐ADP and benzanulated thiophene‐ADP in the respective dyads, and triplet state of C60 in the case of BF2‐chelated dipyrromethene derived dyad during charge recombination. The present findings reveal that these sensitizers are suitable for harvesting light energy from the near‐IR region of the solar spectrum and for building fast‐responding optoelectronic devices operating under near‐IR radiation input.  相似文献   

17.
A combination of picosecond and microsecond transient absorption dynamics reveals the involvement of two mechanisms by which 1,4-benzoquinone (BQ) induces the decay of the excited state of PbS quantum dots (QDs): (i) electron transfer to BQ molecules adsorbed to the surfaces of PbS QDs and (ii) collisionally gated electron transfer to freely diffusing BQ. Together, these two mechanisms quantitatively describe the quenching of photoluminescence upon addition of BQ to PbS QDs in dichloromethane solution. This work represents the first quantitative study of a QD-ligand system that undergoes both adsorbed and collisionally gated photoinduced charge transfer within the same sample. The availability of a collisionally gated pathway improves the yield of electron transfer from PbS QDs to BQ by an average factor of 2.5 over that for static electron transfer alone.  相似文献   

18.
A novel distyryl BODIPY–fullerene dyad is prepared. Upon excitation at the distyryl BODIPY moiety, the dyad undergoes photoinduced electron transfer to give a charge‐separated state with lifetimes of 476 ps and 730 ps in polar (benzonitrile) and nonpolar (toluene) solvents, respectively. Transient absorption measurements show the formation of the triplet excited state of distyryl BODIPY in the dyad, which is populated from charge‐recombination processes in both solvents.  相似文献   

19.
As part of a continuing investigation of the topological control of intramolecular electron transfer (ET) in donor-acceptor systems, a symmetrical parachute-shaped octaethylporphyrin-fullerene dyad has been synthesized. A symmetrical strap, attached to ortho positions of phenyl groups at opposing meso positions of the porphyrin, was linked to [60]-fullerene in the final step of the synthesis. The dyad structures were confirmed by (1)H, (13)C, and (3)He NMR, and MALDI-TOF mass spectra. The free-base and Zn-containing dyads were subjected to extensive spectroscopic, electrochemical and photophysical studies. UV-vis spectra of the dyads are superimposable on the sum of the spectra of appropriate model systems, indicating that there is no significant ground-state electronic interaction between the component chromophores. Molecular modeling studies reveal that the lowest energy conformation of the dyad is not the C(2)(v)() symmetrical structure, but rather one in which the porphyrin moves over to the side of the fullerene sphere, bringing the two pi-systems into close proximity, which enhances van der Waals attractive forces. To account for the NMR data, it is proposed that the dyad is conformationally mobile at room temperature, with the porphyrin swinging back and forth from one side of the fullerene to the other. The extensive fluorescence quenching in both the free base and Zn dyads is associated with an extremely rapid photoinduced electron-transfer process, k(ET) approximately 10(11) s(-)(1), generating porphyrin radical cations and C(60) radical anions, detected by transient absorption spectroscopy. Back electron transfer (BET) is slower than charge separation by up to 2 orders of magnitude in these systems. The BET rate is slower in nonpolar than in polar solvents, indicating that BET occurs in the Marcus inverted region, where the rate decreases as the thermodynamic driving force for BET increases. Transient absorption and singlet molecular oxygen sensitization data show that fullerene triplets are formed only with the free base dyad in toluene, where triplet formation from the charge-separated state is competitive with decay to the ground state. The photophysical properties of the P-C(60) dyads with parachute topology are very similar to those of structurally related rigid pi-stacked P-C(60) dyads, with the exception that there is no detectable charge-transfer absorption in the parachute systems, attributed to their conformational flexibility. It is concluded that charge separation in these hybrid systems occurs through space in unsymmetrical conformations, where the center-to-center distance between the component pi-systems is minimized. Analysis of the BET data using Marcus theory gives reorganization energies for these systems between 0.6 and 0.8 eV and electronic coupling matrix elements between 4.8 and 5.6 cm(-)(1).  相似文献   

20.
Bistridentate metal complexes as photosensitizers are ideal building blocks in the construction of rod-like isomer-free assemblies for intramolecular photoinduced charge separation. Approaches to obtain long-lived luminescent metal-to-ligand charge transfer excited states in bistridentate RuII polypyridine complexes via the manipulation of metal-centered state energies are discussed. Following an introduction to general strategies to prolong the excited state lifetimes, more recent work is explored in detail where tridentate ligands with expanded 2,2′:6′,2″-terpyridine cores are utilized. The synthesis of these tridentate ligands and their corresponding RuII complexes is covered. Bistridentate RuII complexes with microsecond metal-to-ligand charge transfer excited state lifetimes are described, and are used in electron donor–photosensitizer–electron acceptor assemblies for efficient vectorial photoinduced charge separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号