首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Markov models are presented to assess the reliability performance of redundant standby systems in nuclear generating stations. These systems are inactive during the normal station operation. However, they are required to operate for a specified period after the loss of normal power supply during emergency. The estimated probabilities of system failure are useful in deciding on the best combination of standby units and repair facilities. The proposed models are applicable to such systems as combustion turbine units in emergency service (Class III power system, emergency power supply system), and pumps in emergency coolant injection system.  相似文献   

2.
This paper presents three newly developed Markov models for Identical unit parallel, k-out-of-n and standby arrangements with common-cause failures. Generalized expressions for system reliability and mean time to failure are developed. The plots of system reliability and system mean time to failure are shown  相似文献   

3.
It is well recognized that using the hot standby redundancy provides fast restoration in the case of failures. However the redundant elements are exposed to working stresses before they are used, which reduces the overall system reliability. Moreover, the cost of maintaining the hot redundant elements in the operational state is usually much greater than the cost of keeping them in the cold standby mode. Therefore, there exists a tradeoff between the cost of losses associated with the restoration delays and the operation cost of standby elements. Such a trade-off can be obtained by designing both hot and cold redundancy types into the same system. Thus a new optimization problem arises for the standby system design. The problem, referred to in this work as optimal standby element distributing and sequencing problem (SE-DSP) is to distribute a fixed set of elements between cold and hot standby groups and select the element initiation sequence so as to minimize the expected mission operation cost of the system while providing a desired level of system reliability. This paper first formulates and solves the SE-DSP problem for 1-out-of-N: G heterogeneous non-repairable standby systems. A numerical method is proposed for evaluating the system reliability and expected mission cost simultaneously. This method is based on discrete approximation of time-to-failure distributions of the system elements. A genetic algorithm is used as an optimization tool for solving the formulated optimization problem. Examples are given to illustrate the considered problem and the proposed solution methodology.  相似文献   

4.
This paper proposes a procedure to construct the membership functions of the system characteristics of a redundant repairable system with two primary units and one standby in which the coverage factor is the same for an operating unit failure as that for a standby unit failure. Times to failure and times to repair of the operating and standby units are assumed to follow fuzzified exponential distributions. The α-cut approach is used to extract from the fuzzy repairable system a family of conventional crisp intervals for the desired system characteristics, determined with a set of parametric nonlinear programs using their membership functions. A numerical example is solved successfully to illustrate the practicality of the proposed approach. Because the system characteristics are governed by the membership functions, more information is provided for use by management, and because the redundant system is extended to the fuzzy environment, general repairable systems are represented more accurately and the analytic results are more useful for designers and practitioners.  相似文献   

5.
由于储备系统组成部件在存储期间的失效概率各不相同,当部件状态趋于稳定时,各个状态对系统性能的影响也存在差异。为了识别关键部件及其状态对系统性能的影响程度,本文以重要度为主要指标,应用马尔科夫过程研究储备系统在稳态时的性能变化模式。首先基于综合重要度研究系统性能的变化规律,并结合冷储备系统和温储备系统的状态转移矩阵推导出马尔科夫过程中稳态值的计算方法;其次基于稳态综合重要度获得系统稳态时的性能变化模式;最后以双臂机器人为例,分析部件处于不同状态时对系统性能的影响模式,比较了不同部件综合重要度的变化,验证了提出方法的有效性。  相似文献   

6.
Redundancy or standby is a technique that has been widely applied to improving system reliability and availability in system design. In this paper, a general method for modelling standby system is proposed and system performance measures are derived. It is shown that the proposed general standby system includes the cases of cold, hot and warm standby systems with units of exponential distribution, which were studied in the literature, as special cases. An optimal allocation problem for a standby system is also discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
An n-unit system provisioned with a single warm standby is investigated. The individual units are subject to repairable failures, while the entire system is subject to a nonrepairable failure at some finite but random time in the future. System performance measures for systems observed over a time interval of random duration are introduced. Two models to compute these system performance measures, one employing a policy of block replacement, and the other without a block replacement policy, are developed. Distributional assumptions involving distributions of phase type introduce matrix Laplace transformations into the calculations of the performance measures. It is shown that these measures are easily carried out on a laptop computer using Microsoft Excel. A simple economic model is used to illustrate how the performance measures may be used to determine optimal economic design specifications for the warm standby.  相似文献   

8.
研究了有修理延迟的两个不同部件和两个修理工组成的冷贮备系统.假定部件的工作寿命服从一般分布,故障后的延迟修理时间和修理时间均服从指数分布.利用马尔可夫更新过程、拉普拉斯变换和拉普拉斯-司梯阶变换工具,得到了系统的首次故障前时间、可用度和平均故障次数等可靠性指标.  相似文献   

9.
In this paper, a warm standby repairable system consisting of two dissimilar units and one repairman is studied. In this system, it is assumed that the working time distributions and the repair time distributions of the two units are both exponential, and unit 1 is given priority in use. After repair, both unit 1 and unit 2 are “as good as new”. Moreover, the transfer switch in the system is unreliable, and the function of the switch is: “as long as the switch fails, the whole system fails immediately”. Under these assumptions, using Markov process theory and the Laplace transform, some important reliability indexes and some steady state system indexes are derived. Finally, a numerical example is given to illustrate the theoretical results of the model.  相似文献   

10.
By applying shortest path analysis in stochastic networks, we introduce a new approach to obtain the reliability function of time-dependent systems with standby redundancy. We assume that not all elements of the system are set to function from the beginning. Upon the failure of each element of the active path in the reliability graph, the system switches to the next path. Then, the corresponding elements are activated and consequently the connection between the input and the output is established. It is also assumed each element exhibits a constant hazard rate and its lifetime is a random variable with exponential distribution. To evaluate the system reliability, we construct a directed stochastic network called E-network, in which each path corresponds with a minimal cut of the reliability graph. We also prove that the system failure function is equal to the density function of the shortest path of E-network. The shortest path distribution of this new constructed network is determined analytically using continuous-time Markov processes.  相似文献   

11.
It is of great interest for the problem of how to allocate redundancies in a system so as to optimize the system performance in reliability engineering and system security. In this paper, we consider the problems of optimal allocation of both active and standby redundancies in series systems in the sense of various stochastic orderings. For the case of allocating one redundancy to a series system with two exponential components, we establish two likelihood ratio order results for active redundancy case and standby redundancy case, respectively. We also discuss the case of allocating K active redundancies to a series system and establish some new results. The results developed here strengthen and generalize some of the existing results in the literature. Specifically, we give an answer to an open problem mentioned in Hu and Wang [T. Hu, Y. Wang, Optimal allocation of active redundancies in r-out-of-n systems, Journal of Statistical Planning and Inference 139 (2009) 3733–3737]. Numerical examples are provided to illustrate the theoretic results established here.  相似文献   

12.
为了解决开关寿命为连续随机变量且部件工作故障的修理时间与贮备故障后的修理时间各不相同的问题,利用Markov过程理论和Laplace变换方法,研究了有优先权的两不同型部件和两不同修理工组成的温贮备可修系统.假定部件的工作寿命、贮备寿命、工作故障的修理时间和贮备故障的修理时间均服从不同的指数分布,得到了该系统的可靠度Laplace变换和系统的首次故障前平均时间的解析表达式.  相似文献   

13.
泊松冲击下冷贮备可修系统的可靠性分析   总被引:1,自引:0,他引:1  
本文研究了一类由有限个同质部件和一个修理工组成的冷贮备可修系统在随机冲击下的可靠性问题。假设冲击以泊松过程到达。当冲击到达时,它会独立地对系统中工作的部件产生影响,而不会对冷贮备部件产生影响。每次冲击的量都服从某一确定的分布,受冲击的部件以一定的概率发生故障,其故障概率是冲击量的函数,当工作的部件发生故障时,下一个冷贮备部件立即开始工作,当所有部件故障时,系统故障,故障部件按故障顺序进行修理,修理时间服从指数分布,故障部件能被修理如新。本文显式给出了系统首次故障前平均时间、稳态可用度、稳态故障频度等可靠性指标。  相似文献   

14.
本文应用两端同时进行的有限马尔可夫链嵌入法给出了具有复合失效准则的(n,f,k)系统和系统可靠度计算公式及公式中连接矩阵的结构特点。数值计算结果表明,随着构成系统的单元个数的增加,应用两端同时进行的有限马尔可夫链嵌入法比应用传统的有限马尔可夫链嵌入法计算可靠度能节省大量运算时间,特别是对于具有对称结构的(n,f,k)和系统效果更加明显。  相似文献   

15.
In this paper, a cold standby repairable system consisting of two dissimilar components and one repairman is studied. In this system, it is assumed that the working time distributions and the repair time distributions of the two components are both exponential and component 1 is given priority in use. After repair, component 2 is “as good as new” while component 1 follows a geometric process repair. Under these assumptions, using the geometric process and a supplementary variable technique, some important reliability indices such as the system availability, reliability, mean time to first failure (MTTFF), rate of occurrence of failure (ROCOF) and the idle probability of the repairman are derived. A numerical example for the system reliability R(t) is given. And it is considered that a repair-replacement policy based on the working age T of component 1 under which the system is replaced when the working age of component 1 reaches T. Our problem is to determine an optimal policy T such that the long-run average cost per unit time of the system is minimized. The explicit expression for the long-run average cost per unit time of the system is evaluated, and the corresponding optimal replacement policy T can be found analytically or numerically. Another numerical example for replacement model is also given.  相似文献   

16.
In this paper, we investigate the reliability of a type of 1-for-2 shared protection systems. The 1-for-2 shared protection system is the most basic fault-tolerant configuration with shared backup units. We assume that there are two working units each serving a single user and one shared protection (spare) unit in the system. We also assume that the times to failure and to repair are subject to exponential and general distributions respectively. Under these assumptions, we derive the Laplace transform of the survival function (the cdf that the system will survive beyond a given time) for each user as well as the user-perceived Mean Time to First Failure (MTTFF) by combining the state transition analysis and the supplementary variable method. We also show the effect of the repair-time distribution, the failure rates and the repair rates of the units through the case study of small-sized two enterprises that share one spare device for backup purpose. The analysis reveals what is important and what should be done in order to improve the user-perceived reliability of shared protection systems.  相似文献   

17.
This paper compares the availability characteristics between three different systems with reboot delay and standby switching failures. Three systems are studied under the assumption that the time-to-failure and the time-to-repair of the primary and standby units are exponentially and generally distributed, respectively. The reboot times are assumed to be exponentially distributed with parameter β. It is assumed that there is a significant probability q of a switching failure. Using the supplementary variable technique, we develop the explicit expressions for the steady-state availability, Av, for three configurations and perform comparative analysis for three various repair time distributions, such as exponential, gamma, and uniform. Under the cost/benefit criterion, comparisons are made based on assumed numerical values given to the distribution parameters, and to the cost of the primary and standby units.  相似文献   

18.
Phase‐type distribution closure properties are utilized to devise algorithms for generating reliability functions of systems with basic structures. These structures include series, parallel, K‐out‐of‐N, and standby structures with perfect/imperfect switch. The algorithms form a method for system reliability modeling and analysis based on the relationship between the system lifetime and component lifetimes for general structures. The proposed method is suitable for functional system reliability analysis, which can produce reliability functions of systems with independent components instead of only system reliability values. Once the system reliability function is obtained, other reliability measures such as the system's hazard function and mean time to failure can be obtained efficiently using only matrix algebra. Dimensional and numerical comparisons with computerized symbolic processing are also presented to show the superiority of the proposed method.  相似文献   

19.
假定部件工作寿命,修理时间和修理工休假时间均服从一般分布,利用马尔可夫骨架过程理论,研究了修理工带休假的两同型部件冷贮备可修系统的可靠性。  相似文献   

20.
Two-unit warm standby redundant systems have been investigated extensively in the past. The most general model is the one in which both the lifetime and repair time distributions of the units are arbitrary. However the study of standby systems with more than two units, though very important, has received much less attention, possibly because of the built-in difficulties in analyzing them. Such systems have been studied only when either the lifetime or the repair time is exponentially distributed. When both these distributions are general, the problem appears to be intractable even in the case of cold standby systems. The present contribution is an improvement in the state of art in the sense that a three unit warm standby system is shown to be capable of comprehensive analysis. In particular we show that there are imbedded renewal points that render the analysis possible. Using these imbedded renewal points we obtain the reliability and availability functions. Emeritus Deceased 23rd December 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号