首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
For models with dependent input variables, sensitivity analysis is often a troublesome work and only a few methods are available. Mara and Tarantola in their paper (“Variance-based sensitivity indices for models with dependent inputs”) defined a set of variance-based sensitivity indices for models with dependent inputs. We in this paper propose a method based on moving least squares approximation to calculate these sensitivity indices. The new proposed method is adaptable to both linear and nonlinear models since the moving least squares approximation can capture severe change in scattered data. Both linear and nonlinear numerical examples are employed in this paper to demonstrate the ability of the proposed method. Then the new sensitivity analysis method is applied to a cantilever beam structure and from the results the most efficient method that can decrease the variance of model output can be determined, and the efficiency is demonstrated by exploring the dependence of output variance on the variation coefficients of input variables. At last, we apply the new method to a headless rivet model and the sensitivity indices of all inputs are calculated, and some significant conclusions are obtained from the results.  相似文献   

2.
Practical industrial process is usually a dynamic process including uncertainty. Stochastic constraints can be used for industrial process modeling, when system sate and/or control input constraints cannot be strictly satisfied. Thus, optimal control of switched systems with stochastic constraints can be available to address practical industrial process problems with different modes. In general, obtaining an analytical solution of the optimal control problem is usually very difficult due to the discrete nature of the switching law and the complexity of stochastic constraints. To obtain a numerical solution, this problem is formulated as a constrained nonlinear parameter selection problem (CNPSP) based on a relaxation transformation (RT) technique, an adaptive sample approximation (ASA) method, a smooth approximation (SA) technique, and a control parameterization (CP) method. Following that, a penalty function-based random search (PFRS) algorithm is designed for solving the CNPSP based on a novel search rule-based penalty function (NSRPF) method and a novel random search (NRS) algorithm. The convergence results show that the proposed method is globally convergent. Finally, an optimal control problem in automobile test-driving with gear shifts (ATGS) is further extended to illustrate the effectiveness of the proposed method by taking into account some stochastic constraints. Numerical results show that compared with other typical methods, the proposed method is less conservative and can obtain a stable and robust performance when considering the small perturbations in initial system state. In addition, to balance the computation amount and the numerical solution accuracy, a tolerance setting method is also provided by the numerical analysis technique.  相似文献   

3.
Importance analysis is aimed at finding the contributions of the inputs to the output uncertainty. For structural models involving correlated input variables, the variance contribution by an individual input variable is decomposed into correlated contribution and uncorrelated contribution in this study. Based on point estimate, this work proposes a new algorithm to conduct variance based importance analysis for correlated input variables. Transformation of the input variables from correlation space to independence space and the computation of conditional distribution in the process ensure that the correlation information is inherited correctly. Different point estimate methods can be employed in the proposed algorithm, thus the algorithm is adaptable and evolvable. Meanwhile, the proposed algorithm is also applicable to uncertainty systems with multiple modes. The proposed algorithm avoids the sampling procedure, which usually consumes a heavy computational cost. Results of several examples in this work have proven the proposed algorithm can be used as an effective tool to deal with uncertainty analysis involving correlated inputs.  相似文献   

4.
This paper proposes a method combining projection-outline-based active learning strategy with Kriging metamodel for reliability analysis of structures with mixed random and convex variables. In this method, it is determined that the approximation accuracy of projection outlines on the limit-state surface is crucial for estimation of failure probability instead of the whole limit-state surface. To efficiently improve the approximation accuracy of projection outlines, a new projection-outline-based active learning strategy is developed to sequentially obtain update points located around the projection outlines. Taking into account the influence of metamodel uncertainty on the estimation of failure probability, a quantification function of metamodel uncertainty is developed and introduced in the stopping condition of Kriging metamodel update. Finally, Monte Carlo simulation is employed to calculate the failure probability based on the refined Kriging metamodel. Four examples including the Burro Creek Bridge and a piezoelectric energy harvester are tested to validate the performance of the proposed method. Results indicate that the proposed method is accurate and efficient for reliability analysis of structures with mixed random and convex variables.  相似文献   

5.
This paper first presents several formulas for mean chance distributions of triangular fuzzy random variables and their functions, then develops a new class of fuzzy random data envelopment analysis (FRDEA) models with mean chance constraints, in which the inputs and outputs are assumed to be characterized by fuzzy random variables with known possibility and probability distributions. According to the established formulas for the mean chance distributions, we can turn the mean chance constraints into their equivalent stochastic ones. On the other hand, since the objective in the FRDEA model is the expectation about the ratio of the weighted sum of outputs and the weighted sum of inputs for a target decision-making unite (DMU), for general fuzzy random inputs and outputs, we suggest an approximation method to evaluate the objective; and for triangular fuzzy random inputs and outputs, we propose a method to reduce the objective to its equivalent stochastic one. As a consequence, under the assumption that the inputs and the outputs are triangular fuzzy random vectors, the proposed FRDEA model can be reduced to its equivalent stochastic programming one, in which the constraints contain the standard normal distribution function, and the objective is the expectation for a function of the normal random variable. To solve the equivalent stochastic programming model, we design a hybrid algorithm by integrating stochastic simulation and genetic algorithm (GA). Finally, one numerical example is presented to demonstrate the proposed FRDEA modeling idea and the effectiveness of the designed hybrid algorithm.  相似文献   

6.
This paper presents a new dependence measure for importance analysis based on multivariate probability integral transformation (MPIT), which can assess the effect of an individual input, or a group of inputs on the whole uncertainty of model output. The mathematical properties of the new measure are derived and discussed. The nonparametric method for estimating the new measure is presented. The effectiveness of the new measure is compared with the well-known delta and extended delta indices, respectively, through a linear example, a risk assessment model and the Level E model. Results show that the proposed index can produce the same importance rankings as the delta and extended delta indices in these three examples. Yet the computation of the proposed measure is quite tractable due to the univariate nature of MPIT. The results also show that the established estimation method can provide robust estimate for the new measure in a quite efficient manner.  相似文献   

7.
Reliability analysis in uncertain random system   总被引:1,自引:0,他引:1  
Reliability analysis of a system based on probability theory has been widely studied and used. Nevertheless, it sometimes meets with one problem that the components of a system may have only few or even no samples, so that we cannot estimate their probability distributions via statistics. Then reliability analysis of a system based on uncertainty theory has been proposed. However, in a general system, some components of the system may have enough samples while some others may have no samples, so the reliability of the system cannot be analyzed simply based on probability theory or uncertainty theory. In order to deal with this type systems, this paper proposes a method of reliability analysis based on chance theory which is a generalization of both probability theory and uncertainty theory. In order to illustrate the method, some common systems are considered such as series system, parallel system, k-out-of-n system and bridge system.  相似文献   

8.
Project scheduling problem is to determine the schedule of allocating resources to achieve the trade-off between the project cost and the completion time. In real projects, the trade-off between the project cost and the completion time, and the uncertainty of the environment are both considerable aspects for managers. Due to the complex external environment, this paper considers project scheduling problem with coexisted uncertainty of randomness and fuzziness, in which the philosophy of fuzzy random programming is introduced. Based on different ranking criteria of fuzzy random variables, three types of fuzzy random models are built. Besides, a searching approach by integrating fuzzy random simulations and genetic algorithm is designed for searching the optimal schedules. The goal of the paper is to provide a new method for solving project scheduling problem in hybrid uncertain environments.  相似文献   

9.
The paper introduces a new approach to dynamic modeling, using the variation principle, applied to a functional on trajectories of a controlled random process, and its connection to the process' information functional. In [V.S. Lerner, Dynamic approximation of a random information functional, J. Math. Anal. Appl. 327 (1) (2007) 494-514, available online 5-24-06], we presented the information path functional with the Lagrangian, determined by the parameters of a controlled stochastic equation. In this paper, the solution to the path functional's variation problem provides both a dynamic model of a random process and the model's optimal control, which allows us to build a two-level information model with a random process at the microlevel and a dynamic process at the macrolevel. A wide class of random objects, modeled by the Markov diffusion process and a common structure of the process' information functional, leads to a universal information structure of the dynamic model, which is specified and identified on a particular object with the applied optimal control functions. The developed mathematical formalism, based on classical methods, is aimed toward the solution of problems identification, combined with an optimal control synthesis, which is practically implemented and also demonstrated in the paper's example.  相似文献   

10.

In this work, we study a stochastic single machine scheduling problem in which the features of learning effect on processing times, sequence-dependent setup times, and machine configuration selection are considered simultaneously. More precisely, the machine works under a set of configurations and requires stochastic sequence-dependent setup times to switch from one configuration to another. Also, the stochastic processing time of a job is a function of its position and the machine configuration. The objective is to find the sequence of jobs and choose a configuration to process each job to minimize the makespan. We first show that the proposed problem can be formulated through two-stage and multi-stage Stochastic Programming models, which are challenging from the computational point of view. Then, by looking at the problem as a multi-stage dynamic random decision process, a new deterministic approximation-based formulation is developed. The method first derives a mixed-integer non-linear model based on the concept of accessibility to all possible and available alternatives at each stage of the decision-making process. Then, to efficiently solve the problem, a new accessibility measure is defined to convert the model into the search of a shortest path throughout the stages. Extensive computational experiments are carried out on various sets of instances. We discuss and compare the results found by the resolution of plain stochastic models with those obtained by the deterministic approximation approach. Our approximation shows excellent performances both in terms of solution accuracy and computational time.

  相似文献   

11.
In this paper, an efficient approach of modeling and control is presented for Multi-Rate Networked Control System (MRNCS) with considering long time delay. Firstly, the system is modeled as a switched system with a random switching signal which is subject to random networked-induced delay. For this, time delay is defined as a Markov chain and the model of MRNCS is obtained as a Markovian jump linear system. Afterward, a dynamic output feedback controller is designed for output tracking as well as stabilization of closed-loop system. The modeling and control of MRNCS are presented for two structures. At first, a new model of single-side MRNCS is proposed and a mode-independent controller is designed for stabilizing the system. Then the proposed modeling method is generalized to double-side MRNCS and by introducing the Set of Possible Modes (SPM) concept, an SPM-dependent controller is proposed for double-side MRNCS. To show the effectiveness of the proposed methods, some numerical results are provided on the quadruple-tank process.  相似文献   

12.
This paper presents an objective comparison of random fields and interval fields to propagate spatial uncertainty, based on a finite element model of a lunar lander. The impulse based substructuring method is used to improve the analysis efficiency. The spatially uncertain input parameters are modeled by both random fields and interval fields. The objective of this work is to compare the applicability of both approaches in an early design stage under scarce information regarding the occurring spatial parameter variability. Focus is on the definition of the input side of the problem under this scarce knowledge, as well as the interpretation of the analysis outcome. To obtain an objective comparison between both approaches, the gradients in the interval field are tuned towards the gradients present in the random field. The result shows a very similar dependence and correlation structure between the local properties for both approaches. Furthermore, through the transient dynamic estimation, it is shown that the response ranges that are predicted by the interval field and random field are very close to each other.  相似文献   

13.
Applications of traditional data envelopments analysis (DEA) models require knowledge of crisp input and output data. However, the real-world problems often deal with imprecise or ambiguous data. In this paper, the problem of considering uncertainty in the equality constraints is analyzed and by using the equivalent form of CCR model, a suitable robust DEA model is derived in order to analyze the efficiency of decision-making units (DMUs) under the assumption of uncertainty in both input and output spaces. The new model based on the robust optimization approach is suggested. Using the proposed model, it is possible to evaluate the efficiency of the DMUs in the presence of uncertainty in a fewer steps compared to other models. In addition, using the new proposed robust DEA model and envelopment form of CCR model, two linear robust super-efficiency models for complete ranking of DMUs are proposed. Two different case studies of different contexts are taken as numerical examples in order to compare the proposed model with other approaches. The examples also illustrate various possible applications of new models.  相似文献   

14.
A scenario tree is an efficient way to represent a stochastic data process in decision problems under uncertainty. This paper addresses how to efficiently generate appropriate scenario trees. A knowledge‐based scenario tree generation method is proposed; the new method is further improved by accounting for subjective judgements or expectations about the random future. Compared with existing approaches, complicated mathematical models and time‐consuming estimation, simulation and optimization problem solution are avoided in our knowledge‐based algorithms, and large‐scale scenario trees can be quickly generated. To show the advantages of the new algorithms, a multiperiod portfolio selection problem is considered, and a dynamic risk measure is adopted to control the intermediate risk, which is superior to the single‐period risk measure used in the existing literature. A series of numerical experiments are carried out by using real trading data from the Shanghai stock market. The results show that the scenarios generated by our algorithms can properly represent the underlying distribution; our algorithms have high performance, say, a scenario tree with up to 10,000 scenarios can be generated in less than a half minute. The applications in the multiperiod portfolio management problem demonstrate that our scenario tree generation methods are stable, and the optimal trading strategies obtained with the generated scenario tree are reasonable, efficient and robust. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper proposes a new methodology to model uncertainties associated with functional random variables. This methodology allows to deal simultaneously with several dependent functional variables and to address the specific case where these variables are linked to a vectorial variable, called covariate. In this case, the proposed uncertainty modelling methodology has two objectives: to retain both the most important features of the functional variables and their features which are the most correlated to the covariate. This methodology is composed of two steps. First, the functional variables are decomposed on a functional basis. To deal simultaneously with several dependent functional variables, a Simultaneous Partial Least Squares algorithm is proposed to estimate this basis. Second, the joint probability density function of the coefficients selected in the decomposition is modelled by a Gaussian mixture model. A new sparse method based on a Lasso penalization algorithm is proposed to estimate the Gaussian mixture model parameters and reduce their number. Several criteria are introduced to assess the methodology performance: its ability to approximate the functional variables probability distribution, their dependence structure and their features which explain the covariate. Finally, the whole methodology is applied on a simulated example and on a nuclear reliability test case.  相似文献   

16.
This paper investigates the issue of reliability assessment for engineering structures involving mixture of stochastic and non-stochastic uncertain parameters through the Finite Element Method (FEM). Non-deterministic system inputs modelled by both imprecise random and interval fields have been incorporated, so the applicability of the structural reliability analysis scheme can be further promoted to satisfy the intricate demand of modern engineering application. The concept of robust structural reliability profile for systems involving hybrid uncertainties is discussed, and then a new computational scheme, namely the unified interval stochastic reliability sampling (UISRS) approach, is proposed for assessing the safety of engineering structures. The proposed method provides a robust semi-sampling scheme for assessing the safety of engineering structures involving multiple imprecise random fields with various distribution types and interval fields simultaneously. Various aspects of structural reliability analysis with multiple imprecise random and interval fields are explored, and some theoretically instructive remarks are also reported herein.  相似文献   

17.
Stochastic spectral methods are widely used in uncertainty propagation thanks to its ability to obtain highly accurate solution with less computational demand. A novel hybrid spectral method is proposed here that combines generalized polynomial chaos (gPC) and operational matrix approaches. The hybrid method takes advantage of gPC’s efficient handling of large parameter uncertainties and overcomes its limited applicability to systems with relatively highly correlated inputs. The hybrid method’s use of operational matrices allows analyses of systems with low input correlations without suffering its restriction to small parameter uncertainties. The hybrid method is aimed to propagate uncertainties in fractional order systems with random parameters and random inputs with low correlation lengths. It is validated through several examples with different stochastic uncertainties. Comparison with Monte Carlo and gPC demonstrates the superior computational efficiency of the proposed method.  相似文献   

18.
The problem of controlling a linear dynamic plant in real time given its nondeterministic model and imperfect measurements of the inputs and outputs is considered. The concepts of current distributions of the initial state and disturbance parameters are introduced. The method for the implementation of disclosable loop using the separation principle is described. The optimal control problem under uncertainty conditions is reduced to the problems of optimal observation, optimal identification, and optimal control of the deterministic system. To extend the domain where a solution to the optimal control problem under uncertainty exists, a two-stage optimal control method is proposed. Results are illustrated using a dynamic plant of the fourth order.  相似文献   

19.
Uncertain random variables are used to describe the phenomenon of simultaneous appearance of both uncertainty and randomness in a complex system. For modeling multi-objective decision-making problems with uncertain random parameters, a class of uncertain random optimization is suggested for decision systems in this paper, called the uncertain random multi-objective programming. For solving the uncertain random programming, some notions of the Pareto solutions and the compromise solutions as well as two compromise models are defined. Subsequently, some properties of these models are investigated, and then two equivalent deterministic mathematical programming models under some particular conditions are presented. Some numerical examples are also given for illustration.  相似文献   

20.
In this paper, we first present a learning algorithm for dynamic recurrent Elman neural networks based on a dissimilation particle swarm optimization. The proposed algorithm computes concurrently both the evolution of network structure, weights, initial inputs of the context units, and self-feedback coefficient of the modified Elman network. Thereafter, we introduce and discuss a novel control method based on the proposed algorithm. More specifically, a dynamic identifier is constructed to perform speed identification and a controller is designed to perform speed control for Ultrasonic Motors (USM). Numerical experiments show that the novel identifier and controller based on the proposed algorithm can both achieve higher convergence precision and speed than other state-of-the-art algorithms. In particular, our experiments show that the identifier can approximate the USM's nonlinear input–output mapping accurately. The effectiveness of the controller is verified using different kinds of speeds of constant, step, and sinusoidal types. Besides, a preliminary examination on a randomly perturbation also shows the robust characteristics of the two proposed models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号