首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Si nanowires (Si NWs) structures with good antireflection and enhanced optical‐absorption properties are used to fabricate Si quantum dots/Si NWs heterojunction solar cells. The Si NWs prepared by the metal‐assisted chemical‐etching technique exhibit a very low reflection in a wide spectral range (300–1200 nm). Correspondingly, the optical absorption reaches as high as 88.9% by weighting AM1.5G solar spectrum. Both the short current density and open current voltage are improved compared to the reference flat cell. However, the photovoltaic properties are degraded by varying the Si NWs with long etching time, possibly due to the increased etching‐induced surface states. The optimal Si NWs lead to the best cell with the power conversion efficiency of 11.3%.  相似文献   

2.
利用金属有机化学气相沉积(MOCVD)方法在具有偏角(0°~0.9°)的Si(111)衬底上生长了GaN薄膜。采用高分辨X射线衍射(HRXRD)对Si衬底的偏角进行了精确的测量,利用HRXRD、原子力显微镜(AFM)以及光致发光(PL)对外延薄膜的晶体质量、量子阱中In组分、表面形貌及光学特性进行了研究。结果表明,Si(111)衬底偏角对量子阱中的In组分、 GaN外延膜的表面形貌、晶体质量以及光学性能具有重大影响。为了获得高质量的GaN外延薄膜,衬底偏角必须控制在小于0.5°的范围内。超出该范围,GaN薄膜的晶体质量、表面形貌及光学性能都明显下降。  相似文献   

3.
 为了获得高质量光学表面的碳化硅反射镜,利用射频磁控溅射方法,在直径70 mm的RB-SiC基片上沉积了厚约100 μm的Si改性涂层,对改性层进行超光滑加工,并对改性层的表面形貌及性能进行了测试。ZYGO表面粗糙度仪测试结果表明,抛光后Si改性涂层表面粗糙度均方根值达到了0.496 nm;X射线衍射仪测试显示,制备Si改性涂层为多晶结构;使用拉力机做附着力测试,结果表明膜基附着力大于10.7 MPa。证明采用磁控溅射技术制备的Si改性涂层均匀、致密、附着力好,能够满足RB-SiC材料表面改性要求。  相似文献   

4.
蒋红兵  刘杨华 《光学学报》1995,15(3):77-380
测量了Si(100)(2×1)-H表面和Si(100)(3×1)-H表面的反射二次谐波强度随温度的变化关系,并与清洁的Si(100)(2×1)表面进行了比较。Si(100)(2×1)表面和Si(100)(3×1)-H表面的二次谐波强度随温度的上升而单调地减小,Si(100)(2×1)-H表面二次谐波强度随温度的变化不是单调的,约在470K时信号最大。可以根据二次谐波信号的强度及其随温度的变化关系来确定样品温度和表面结构。  相似文献   

5.
Electric-field drive optical modulators using a Si ring resonator were fabricated on silicon-on-insulator (SOI) wafers. The fabricated resonators consisted of Si waveguides with width and thickness of 1.0 and 0.3 μm, respectively. In order to induce the linear electro-optic (EO) effect in the Si core layer, the strain was applied by covering the layer with Si3N4 film (0.26 μm thick) deposited by low pressure chemical vapor deposition (LPCVD) at 750 °C. The vertical electric-field was applied to the Si waveguide through the top and bottom cladding layers, and the optical output from the drop port at the resonance wavelength was measured. At a wavelength of 1501.6 nm, the optical modulation of 33% was obtained at 200V (electric-field at the silicon surface ∼3 × 105 V/cm, nearly the breakdown field). The resonance wavelength was shifted toward the short wavelength side by applying both positive and negative voltages, this shift was explained by carrier concentration modulation. The linear EO effect in the Si core layer was not observed, presumably because the strain in the Si core layer was too small.  相似文献   

6.
Excitation with nanosecond-laser pulses at fluences well below the melt threshold removes Si dimers on the Si(001)-(2x1) surface and induces atomic-Si desorption through an electronic mechanism. The rate of this photoinduced reaction depends superlinearly on the excitation intensity, and is enhanced resonantly at the photon energy where the optical transition injects holes into the dimer backbond surface-band state. The results reveal the crucial role of surface holes and their nonlinear localization in the bond rupture of Si dimers on this surface.  相似文献   

7.
The use of hydrogen passivation of the silicon layers in Si/W soft X-ray reflective multilayer mirrors is investigated. Standard passivation, corresponding to Si:H/W structures, led to reduced growth properties of the W layers. The additional use of atomically thin Si adhesion layers, corresponding to Si:H/Si/W, led to improved growth and increased soft X-ray reflectivity. The effects taking place at the interfaces are analysed by bright field planar TEM and in situ X-ray reflectivity, and are described in terms of interface and surface energies, with quantitatively analysis of intermixing, materials density, and geometrical optical effects.  相似文献   

8.
We present a first-principle theoretical study of the dielectric functions of Si/CaF2 superlattices. In particular, we investigate how the optical response depends on the thickness of the Si layers. Our results show that for very thin Si slabs (well width less than 20 Å) optical excitation peaks are present in the visible range. These peaks are related to strong transitions between localized states. Moreover, the static dielectric costant is considerably reduced. From the comparison made with recent experimental data on similar systems we conclude that the quantum confinement, a good surface passivation and the presence of localized states are the key ingredients in order to have photoluminescence in confined silicon based systems.  相似文献   

9.
External differential reflection measurements were carried out on clean Si(100) and (110) surfaces in the photon energy range of 1.0 to 3.0 eV at 300 and 80 K. The results for Si(100) at 300 K showed two peaks in the joint density of states curve, which sharpened at 80 K. One peak at 3.0 ± 0.2 eV can be attributed to optical transitions from a filled surface states band near the top of the valence band to empty bulk conduction band levels. The other peak at 1.60 ± 0.05 eV may be attributed to transitions to an empty surface states band in the energy gap. This result favours the asymmetric dimer model for the Si(100) surface. For the (110) surface at 300 K only one peak was found at 3.0 ± 0.2 eV. At 80 K the peak height diminished by a factor of two. Oxygen adsorption in the submonolayer region on the clean Si(100) surface appeared to proceed in a similar way as on the Si(111) 7 × 7 surface. For the Si(110) surface the kinetics of the adsorption process at 80 K deviated clearly. The binding state of oxygen on this surface at 80 K appeared to be different from that on the same surface at 300 K.  相似文献   

10.
The depth profile of electric-field-induced(EFI) optical rectification(OR) and EFI Pockels effect(PE) in a Si(110) crystal are investigated. The results show that EFI OR and PE signals are very sensitive to the electric field strength in the surface layers of the Si crystal. Theoretical formulas that include the electric field parameters and the widths of the space-charge region are presented and agreed very well with the experimental results. The experiments and simulations indicate that EFI OR and PE are potential methods for researching the surface/interface properties along the depth direction in centrosymmetric crystals such as Si.  相似文献   

11.
The size-selected phenyl-passivated Si nanoclusters with the mean diameters of 1.5 and 1.3 nm have been prepared in the solution route. The intense PL observed in Si nanoclusters, in which the band gap energies increase up to approximately 4 eV, originates from electron-hole pair recombination. From time-resolved PL, two kinds of exponential PL decay components with fast and slow lifetime were observed. The identical decays with slow lifetime will be derived from the surface states of Si nanoclusters passivated by phenyl molecules. The size-dependent zero-phonon assisted optical transitions by quantum size effects occur at a high rate of sub-nanosecond timescale.  相似文献   

12.
Previously developed methods for determining the wave functions and energy levels of shallow donor impurities on the surface or in the bulk of a semiconductor have been extended to the case of impurities at a finite depth from the surface. Calculations were performed for impurities near either a (100) or (111) surface in Sci and for a (111) surface in Ge. The ground state and the excited state having the largest electric dipole coupling to the ground state wete determined. In addition, the optical absorption cross section for transitions from the ground state to this excited state were calculated for surface and near surface states. These results were used to calculate a theoretical absorption spectrum for Si doped uniformly to a depth of 10 atomic layers.  相似文献   

13.
The spontaneous formation of mesoscopic Pb-wires, on 4° off-cut Si(0 0 1) vicinal surface, Si(7 5 5), Si(5 3 3), and Si(1 1 0) substrates was studied by low-energy electron microscopy. Before the deposition of Pb the substrates were modified by predeposition of a submonolayer amount of Au followed by annealing. The Au-induced reconstruction creates quasi-one-dimensional facets and superstructures. Their width ranged from several hundred nm in the case of the vicinal Si(0 0 1) down to atomic scale size, for the Si(1 1 0) surface. The best-developed arrays of parallel aligned mesoscopic wires were obtained during the deposition of Pb on substrates cooled slightly below room temperature. Wires with length to width ratio reaching 130 were produced on the Si(7 5 5) and the Si(5 3 3) substrates. The width of these nanowires was uniform over the whole substrate and was about 60 nm. The driving forces for the formation of the mesoscopic wires are the anisotropic strain due to the large misfit between the Pb and the Si lattice and one-dimensional diffusion of Pb.  相似文献   

14.
Electrical field components of metal‐surface plasmon resonance were analyzed in detail. Both longitudinal optical (LO) and transverse optical (TO) phonon modes of a biaxially strained Si layer can be excited by surface‐enhanced Raman spectroscopy (SERS). The z to y polarization ratio in SERS measurements was calculated to be 0.78 using the intensity ratio of TO to LO phonon modes. The electrical field components of SERS were also calculated by the finite‐difference time‐domain method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Growth and the optical properties of epitaxial heterostructures Si(111)/(CrSi2 nanocrystallites)/Si(111) based on nanosized islands of chromium disilicide (CrSi2) on Si(111) were studied using low-energy electron diffraction, atomic-force microscopy, and optical reflection and transmission spectroscopy. The heterostructures with thicknesses of 0.1, 0.3, 0.6, 1.0, and 1.5 nm were formed by reactive epitaxy at a temperature of 500°C followed by the epitaxial growth of silicon at 750°C. The specific features of changes in the density and sizes of CrSi2 islands on the silicon surface were determined at T = 750°C as the chromium layer thickness was increased. It was established that, in the heterostructures with chromium layer thicknesses exceeding 0.6 nm, a small part of faceted Cr2Si2 nanocrystallites (NCs) emerge into near-surface region of the silicon, which is confirmed by the data from optical reflectance spectroscopy and an analysis of the spectral dependence of the absorption coefficient. A critical size of NCs is shown to exist above which their shift to the silicon surface is hampered. The decreased density of emerging NCs at chromium layer thicknesses of 1.0–1.5 nm is associated with the formation of coarser NCs within a silicon layer, which is confirmed by the data from differential reflection spectroscopy.  相似文献   

16.
By comparison of measured and ab initio calculated surface optical spectra we demonstrate that two main oxidation processes initially occur after dissociation of oxygen molecules, forming in both cases Si–O–Si entities: (i) breaking of Si dimers by incorporation of oxygen atoms; (ii) incorporation into the silicon backbonds. The kinetics up to half-monolayer coverage is determined, and explained in terms of Langmuir-like adsorption mechanisms with different probabilities.  相似文献   

17.
Nanoparticles of noble metals, such as gold and silver, exhibit unique and tunable optical properties on account of their surface plasmon resonance. In particular, gold nanoparticles on silicon substrates are attractive for future nanoscale sensors and optical devices due to their resistance to oxidation and due to their electrical and optical properties. In this study, we developed a nanostructured gold/macroporous silicon (Au/PS) substrate capped with 11-mercaptoundecanoic acid (11-MUA) with ultra-sensitive detection properties achieved in characterization, an approach based on surface-enhanced Raman scattering (SERS). Surface-enhanced Raman scattering allows us to detect substances at a low concentration level and to observe structural details of a thiol molecule bonded to small film thicknesses. Raman measurements were carried out at 514 nm and 785 nm. In order to emphasize the effect of the Si microstructuration on the efficiency of this new substrate (Au/PS) proposed for SERS experiments, the same molecule (11-MUA) was adsorbed on it as well as on gold/atomically flat silicon (Au/Si) and on commercial Klarite (Mesophotonics) substrates. Systematic studies realized by Raman spectroscopy, electron microscopy, and X-ray spectroscopy show the influence of silicon substrate texturing and metallic deposition conditions, including time and temperature on the optical phenomena.  相似文献   

18.
The asymmetric distributions of surface optical second harmonic generation (SHG) through azimuthally angular scans of (111) silicon wafers on which thin silver films were deposited, have been detected with different polarizations of output beams. On account of the inversion symmetry of silicon crystals, the SHG for the Ag/Si system is mainly contributed by the silver film and the silicon surface. In this work, we found that the interface strain implies an asymmetric intensity variation of SHG with respect to the surface azimuthal angles as an ultra thin Ag film is deposited on silicon wafers. This asymmetric behavior is prominent as the deposited silver layer is heated so that the continuous film aggregates to become granular nanoparticles. Similar changes of the surface asymmetric SHG are observed for a bare Si wafer imposed upon by an external force.  相似文献   

19.
The X-ray optical properties of diffraction gratings fabricated on the basis of a Si(400) crystal with a period of D = 1 μm are studied by triple-crystal X-ray diffractometry. The diffraction gratings are manufactured both by silicon profiling during the process of plasma chemical etching and by forming a phase-shift grating on the surface of a Si crystal. The principal difference in the diffraction properties of these gratings is demonstrated. The presence of an Au phase-shift grating is shown to lead to the formation of a two-dimensional diffraction pattern, whereas Si profiling leads to the formation of only a one-dimensional diffraction pattern.  相似文献   

20.
We report structural as well as optical studies on Si/Ge bilayer structures having different individual layer thicknesses. The Raman spectrum of [Ge (5 nm)/Si (5 nm)] bilayer structure shows amorphous nature, while the [Si (5 nm)/Ge (5 nm)] bilayer structure shows a mixed nanocrystalline/amorphous behaviour of the layers. As the thickness of the individual layers increases to 10 nm, the introduction of large number of Si atoms at the interface results in reduction of Ge crystallization as well as higher intensity of interfacial SiGe alloy formation. This may be regarded as a consequence of the island growth induced surface roughening in the later case (i.e. in [Si (10 nm)/Ge (10 nm)] bilayer) as also revealed by corresponding atomic force microscopy (AFM) images. These results are also supported by Photoluminescence (PL) spectra recorded using two different photon energies of 300 and 488 nm along with the optical absorption measurements giving higher values of band gap as compared to their corresponding bulks, revealing the effect of quantum confinement in the deposited layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号