首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of metallic nanoparticles (NPs) has exponentially increased in the past decade due to their unique physical and chemical properties at nano-scales [1]. They are added to a myriad of materials and compositions. The key question is not if NPs will enter environmental compartments but rather when. The fate and the stability of NPs in the environment play important roles in determining their environmental distributions and probably control the risk to human health through exposure. Emissions of nanomaterials (NMs) could be intentional or unintentional but occur in particulate, aggregate or embedded states.Despite environmental transformations and changes in their surrounding environment, metallic NPs (M-NPs) tend to exist as stable colloidal aggregates or dispersions. Characterizing NPs and NMs in environmental samples implies determination of their size, their chemical composition and their bulk concentrations in the matrix. Differential size filtration is the most commonly used method to isolate NPs from aqueous matrices. Micro-filtration, nano-filtration, cross-flow filtration, and ultracentrifugation are usually employed to achieve the highest degree of segregation.Chemical characterization of NPs and NMs has traditionally been done using transmission/scanning electron microscopy (TEM/SEM) followed by energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). However, because of their intrinsic limitations, methods have also been combined and validated [e.g., size exclusion and ion chromatography (SEC and IC) with multi-element detection {inductively-coupled plasma mass spectrometry and optical emission spectroscopy (ICP-MS and ICP-OES)].This review describes the current state and the challenges of isolating, segregating and detecting M-NPs in environmental samples. A simple case study shows a common procedure for the analysis of NPs in complex aqueous matrices.  相似文献   

2.
Over the past few years, nanometer-sized transition metal particles have been intensively pursued as potentially advanced catalysts because their special properties lie between those of single metal atoms and bulk metal. Achieving the accurate control of particle size and overall particle size distribution is one of the most crucial challenges to provide unique chemical and physical properties. We highlight herein our recent progress in the exploitation of promising nanoparticle (NP)-based catalysts designed by precise architecture that enable efficient and selective chemical transformations and can be completely separated and are recyclable. This perspective article consists of the following two specific topics: (i) multifunctional catalysts based on magnetic NPs and (ii) new routes for the preparation of supported metal NPs catalysts. The synthetic strategies described here are simple and general for practical catalyst design, thus allowing a strong protocol for creating various nanostructured catalysts.  相似文献   

3.
Bioapplications of gold nanoparticles (Au NPs) have received significant attention due to their sensitive optical characteristics which depend on particle size and shape, state of aggregation and to surrounding (bio)chemical environment. In this review, we present an overview of several methods to synthesise stable colloidal Au NPs with focus on the use of the electrostatic assembly method of polyelectrolytes (PE) to functionalise Au NPs. This versatile method allows adjusting the thickness, chemical functions and the surface charge of the shells surrounding the Au NPs, thus the relevance of these features for the bioapplications of Au NPs involving surface-mediated processes is discussed. Moreover, because the PE used can be functionalised with organic fluorophores, drugs or antibodies yielding multifunctional nanocomposites useful for those applications, this review also provides an overview of the electrostatic assembly of functionalised PE onto Au NPs and their bioapplications.  相似文献   

4.
环境中金属纳米颗粒的分析检测不仅需要关注其浓度和化学组成,还需要对其形状、粒径和表面电荷等进行表征.此外,环境中金属纳米颗粒的分析需要解决其低赋存浓度以及复杂基质干扰的难题.无固定相分离技术与电感耦合等离子体质谱(ICP-MS)的在线联用,具有较强的颗粒分离能力和较低的元素检出限,能够快速准确地提供金属纳米颗粒的粒径分...  相似文献   

5.
Monodisperse ruthenium nanoparticles were prepared by reduction of RuCl3 in 1,2-propanediol. The mean particle size was controlled by appropriate choice of the reduction temperature and the acetate ion concentration. Colloidal solutions in toluene were obtained by coating the metal particles with dodecanethiol. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XANES and EXAFS for the Ru K-absorption edge) were performed on particles of two different diameters, 2 and 4 nm, and in different environments, polyol/acetate or thiol. For particles stored in polyol/acetate XPS studies revealed superficial oxidation limited to one monolayer and a surface coating containing mostly acetate ions. Analysis of the EXAFS spectra showed both oxygen and ruthenium atoms around the ruthenium atoms with a Ru-Ru coordination number N smaller than the bulk value, as expected for fine particles. In the case of 2 nm acetate-capped particles N is consistent with particles made up of a metallic core and an oxidized monolayer. For 2 nm thiol-coated particles, a Ru-S bond was evidenced by XPS and XAS. For the 4 nm particles XANES and XPS studies showed that most of the ruthenium atoms are in the zerovalent state. Nevertheless, in both cases, when capped with thiol, the Ru-Ru coordination number inferred from EXAFS is much smaller than for particles of the same size stored in polyol. This is attributed to a structural disorganization of the particles by thiol chemisorption. HRTEM studies confirm the marked dependence of the structural properties of the ruthenium particles on their chemical environment; they show the acetate-coated particles to be single crystals, whereas the thiol-coated particles appear to be polycrystalline.  相似文献   

6.
Nanoparticles (NPs), due to their unique physical and chemical properties, especially their minute particle size (?100 nm), find applications in numerous industrial, commercial and consumer products. After their end-user applications, these NPs find their way into the environment and food products. The NPs so discharged need to be quantified accurately to determine their toxicity and exposure levels.At this time, there is a need to develop a unified method for their determination. There are plenty of techniques available in the market that were initially used for colloidal particles (e.g., microscopy, spectroscopy and the recent addition of magnetic resonance), but each of these techniques has a certain degree of uncertainty.Further, sample homogeneity, sample preparation, instrument-operating procedures, and statistical practices are likely to add to the complexity of the problem. In this context, this review attempts to understand the widely-used light-scattering techniques, including their theory, practice and real-world use in determination of NPs in environmental and food applications.  相似文献   

7.
Polymeric nanoparticles(NPs)have drawn great interest in the past few years due to their potential applications in the felds of biomedical and optical technologies.However,it is still a challenge to prepare functional polymeric NPs,especially for particle diameters smaller than 50 nm.In this work,we demonstrate a one-pot method to fabricate reactive poly(divinyl benzene-co-maleic anhydride)NPs(PDVBMAH NPs)through a self-stable precipitation polymerization process.The size and morphology of these PDVBMAH NPs were characterized in detail by scanning electronic microscopy,and their chemical structure was determined by IR.The results showed that these NPs were highly cross-linked and their diameter was about 30 nm with narrow distribution.Additionally,the DVB and MAH endow the NPs with reactive surface anhydride and pendant vinyl groups,and these particles could be further functionalized through reaction of these groups.A plausible pathway was proposed for the formation of PDVBMAH NPs.  相似文献   

8.
We have carried out molecular dynamics simulation studies of binary mixtures of spherical nanoparticles (NPs) in a matrix of dense isotropic rod-shaped nematogens, with the size of the nematogen length being similar to that of the NP diameter. NPs at even low concentrations were found to shift the isotropic-nematic (I-N) transition significantly to higher pressure at a given temperature, indicative of long-range perturbation of the nematogenic matrix by the NPs. The NPs were found to be dispersed in the dense isotropic nematogenic matrix over a wide range of NP concentrations due to long-range (compared with the molecular size of the nematogens) repulsion caused by NP-induced local order fluctuations and reduced local orientational correlation in the isotropic nematogenic matrix, in contrast to the phase separation predicted and observed in other studies where the particles were much larger or smaller than the nematogens. Furthermore, since the repulsion observed in the NP-nematogen mixtures is only microscopically long range (on the order of about ten molecular lengths of the nematogens), globally ordered clustering observed in mixtures of colloidal particles in nematic matrices resulting from macroscopically long-range interaction is not observed in our simulations.  相似文献   

9.
We report on systematic studies of size-dependent alloy formation of silver-coated gold nanoparticles (NPs) in aqueous solution at ambient temperature using X-ray absorption fine structure spectroscopy (XAFS). Various Au-core sizes (2.5-20 nm diameter) and Ag shell thicknesses were synthesized using radiolytic wet techniques. The equilibrium structures (alloy versus core-shell) of these NPs were determined in the suspensions. We observed remarkable size dependence in the room temperature interdiffusion of the two metals. The interdiffusion is limited to the subinterface layers of the bimetallic NPs and depends on both the core size and the total particle size. For the very small particles (< or =4.6 nm initial Au-core size), the two metals are nearly randomly distributed within the particle. However, even for these small Au-core NPs, the interdiffusion occurs primarily in the vicinity of the original interface. Features from the Ag shells do remain. For the larger particles, the boundary is maintained to within one monolayer. These results cannot be explained either by enhanced self-diffusion that results from depression of the melting point with size or by surface melting of the NPs. We propose that defects, such as vacancies, at the bimetallic interface enhance the radial migration (as well as displacement around the interface) of one metal into the other. Molecular dynamics calculations correctly predict the activation energy for diffusion of the metals in the absence of vacancies and show an enormous dependence of the rate of mixing on defect levels. They also suggest that a few percent of the interfacial lattice sites need to be vacant to explain the observed mixing.  相似文献   

10.
Micro- and nanoplastics have been detected in diverse matrices. Recent studies have suggested their health impact on humans, animals, plants, and environment which depends on the size, concentration, chemical nature, and the mode of interaction of the plastic particles. Detection and quantification of these particles are often challenging due to their small size and complexity of the matrix in which they exist. The concentration and size of the particles combined with the nature of the matrix determines an analytical method to be followed. In recent years, many review articles focusing on origin, fate, and health effects of micro- and nanoplastics are already published. A systemic review focusing on analytical performance of currently available micro- and nanoplastics analysis methods would be useful for the scientific community. In this article, we reviewed papers and reports published in recent decades focusing on the sampling, concentration, detection, and chemical identification methods. We also reviewed the emerging new methods for microplastic analysis. Finally, we provide advantages and limitations of the methods and future perspectives on microplastic analysis.  相似文献   

11.
Adhesion as an interplay between particle size and surface roughness   总被引:1,自引:0,他引:1  
Surface roughness plays an important role in the adhesion of small particles. In this paper we have investigated adhesion as a geometrical effect taking into account both the particle size and the size of the surface features. Adhesion is studied using blunt model particles on surfaces up to 10 nm root-mean-square (RMS) roughness. Measurements with particles both smaller and larger than surface features are presented. Results indicate different behavior in these areas. Adhesion of particles smaller than or similar in size to the asperities depend mainly on the size and shape of the asperities and only weakly on the size of the particle. For large particles also the particle size has a significant effect on the adhesion. A new model, which takes the relative size of particles and asperities into account, is also derived and compared to the experimental data. The proposed model predicts adhesion well over a wide range of particle/asperity length scales.  相似文献   

12.
NiO nanoparticles (NPs) were prepared by a sol-gel process using the citrate route. The sol-gel parameters were tuned to obtain samples with different average particle sizes, ranging from 12 to 70 nm. Magnetic characterization revealed an increase in the blocking temperature with the diameter of the NPs and an increase in the effective magnetic anisotropy (K(eff)) with decreasing particle size. The magnetic moment per particle was calculated for all samples using the susceptibility value at T = 300 K. The number of uncompensated spins per NP was found to be proportional to n (n(S)≡ total number of spins), indicating that they are randomly distributed on the NP surface. For small diameters (<30 nm) the surface anisotropy constant was estimated, using, for NiO NPs, a recent model describing the evolution of K(eff) with particle size. Hysteretic loops performed at low temperatures after field cooling displayed loop shifts (~6.5 kOe in the field axis and ~0.18 emu g(-1) vertically), coercive field enhancement (H(C)≈ 4.8 kOe) and training effects for the smaller NPs. The sample with NPs of larger diameters presented magnetic properties close to those of bulk NiO.  相似文献   

13.
Ecotoxicity and analysis of nanomaterials in the aquatic environment   总被引:3,自引:0,他引:3  
Nanotechnology is a major innovative scientific and economic growth area. However nanomaterial residues may have a detrimental effect on human health and the environment. To date there is a lack of quantitative ecotoxicity data, and recently there has been great scientific concern about the possible adverse effects that may be associated with manufactured nanomaterials. Nanomaterials are in the 1- to 100-nm size range and can be composed of many different base materials (carbon, silicon and metals, such as gold, cadmium and selenium) and they have different shapes. Particles in the nanometer size range do occur both in nature and as a result of existing industrial processes. Nevertheless, new engineered nanomaterials and nanostructures are different because they are being fabricated from the “bottom up”. Nanomaterial properties differ compared with those of the parent compounds because about 40–50% of the atoms in nanoparticles (NPs) are on the surface, resulting in greater reactivity than bulk materials. Therefore, it is expected that NPs will have different biological effects than parent compounds. In addition, release of manufactured NPs into the aquatic environment is largely an unknown. The surface properties and the very small size of NPs and nanotubes provide surfaces that may bind and transport toxic chemical pollutants, as well as possibly being toxic in their own right by generating reactive radicals. This review addresses hazards associated and ecotoxicological data on nanomaterials in the aquatic environment. Main weaknesses in ecotoxicological approaches, controversies and future needs are discussed. A brief discussion on the scarce number of analytical methods available to determinate nanomaterials in environmental samples is included.  相似文献   

14.
The influence of cobalt particle size in the range of 2.6-27 nm on the performance in Fischer-Tropsch synthesis has been investigated for the first time using well-defined catalysts based on an inert carbon nanofibers support material. X-ray absorption spectroscopy revealed that cobalt was metallic, even for small particle sizes, after the in situ reduction treatment, which is a prerequisite for catalytic operation and is difficult to achieve using traditional oxidic supports. The turnover frequency (TOF) for CO hydrogenation was independent of cobalt particle size for catalysts with sizes larger than 6 nm (1 bar) or 8 nm (35 bar), while both the selectivity and the activity changed for catalysts with smaller particles. At 35 bar, the TOF decreased from 23 x 10(-3) to 1.4 x 10(-3) s(-1), while the C5+ selectivity decreased from 85 to 51 wt % when the cobalt particle size was reduced from 16 to 2.6 nm. This demonstrates that the minimal required cobalt particle size for Fischer-Tropsch catalysis is larger (6-8 nm) than can be explained by classical structure sensitivity. Other explanations raised in the literature, such as formation of CoO or Co carbide species on small particles during catalytic testing, were not substantiated by experimental evidence from X-ray absorption spectroscopy. Interestingly, we found with EXAFS a decrease of the cobalt coordination number under reaction conditions, which points to reconstruction of the cobalt particles. It is argued that the cobalt particle size effects can be attributed to nonclassical structure sensitivity in combination with CO-induced surface reconstruction. The profound influences of particle size may be important for the design of new Fischer-Tropsch catalysts.  相似文献   

15.
Nanoparticles (NPs) of SiO(2) (15 nm) or Ag (20 - 40 nm) were dispersed in water, coffee and milk at several aqueous dilutions. The NPs dispersions concentrations were quantified with an ion beam technique: Particle-Induced X-ray Emission. Additional measurements in relation to the state of the NPs dispersions were done: particle size distribution by centrifuge liquid sedimentation and the extreme surface composition by X-ray photoelectron spectroscopy. The particle size distribution of SiO(2) and Ag NPs dispersions in water and Ag NPs in coffee remained mostly as primary particles with hydrodynamic diameters close to the reported pristine NPs diameter. SiO(2) NPs agglomerated in coffee. In milk, both NPs presented an adsorption with milk lipids. Extreme surface composition corroborated adsorption in milk and showed that SiO(2) agglomerates adsorb some coffee components. A linear tendency in the measurement of the concentration dilutions of all dispersions was measured, and a lack of media influence in the slope of each curve was found. Limits of detection with the current setup were estimated at 0.5 and 0.3 mg/ml for SiO(2) and Ag NPs, respectively.  相似文献   

16.
Particles were ablated from laser desorption and inlet ionization matrix thin films with a UV laser in reflection and transmission geometries. Particle size distributions were measured with a combined scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) system that measured particles in the size range from 10 nm to 20 μm. The matrixes investigated were 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), sinapic acid (SA), 2,5-dihydroxy-acetophenone (DHAP), and 2-nitrophloroglucinol (NPG). Nanoparticles with average diameters between 20 and 120 nm were observed in both transmission and reflection geometry. The particle mass distribution was significantly different in reflection and transmission geometry. In reflection geometry, approximately equal mass was distributed between particles in the 20 to 450 nm range of diameters and particles in the 450 nm to 1.5 μm diameter range. In transmission mode, the particle mass distribution was dominated by large particles in the 2 to 20 μm diameter range. Ablation of inlet ionization matrices DHAP and NPG produced particles that were 3 to 4 times smaller compared with the other matrices. The results are consistent with ion formation by nanoparticle melting and breakup or melting and breakup of the large particles through contact with heated inlet surfaces.
?  相似文献   

17.
In this work, we highlight the influence of the particle–particle interaction on the retention behavior in asymmetric flow field-flow fractionation (A4F) and the misunderstanding considering the size determination by a light-scattering detector (static and dynamic light scattering) by comparing fullerene nanoparticles to similar sized polystyrene nanoparticle standards. The phenomena described here suggest that there are biases in the hydrodynamic size and diffusion determination induced by particle–particle interactions, as characterized by their virial coefficient. The dual objectives of this paper are to (1) demonstrate the uncertainties resulting from the current practice of size determination by detectors coupled to an A4F system and (2) initiate a discussion of the effects of particle–particle interactions using fullerene nanoparticles on their characterization as well as their origins. The results presented here clearly illustrate that the simple diffusion coefficient equation that is generally used to calculate the hydrodynamic size of nanoparticles (NPs) cannot be considered for whole fractograms according to their size distribution. We tried to identify particle interactions that appear during fractionation and demonstrated using the fully developed diffusion coefficient equation. We postulate that the observed interaction-dependent retention behavior may be attributed to differences in the virial coefficient between NPs and between NPs and the accumulation wall (membrane surface) without quantifying it. We hope that our results will stimulate discussion and a reassessment of the size determination procedure by A4F-LS to more fully account for all the influential material parameters that are relevant to the fractionation of nanoscale particles by A4F.  相似文献   

18.
Quantum dot (QD) nanoparticles (NPs) are of great interest to various researchers due to their wide range of applications, from photovoltaic sensitizers to in vivo fluorescent probes. There is a need to characterize environmental fate, degradation, and ecotoxicity of QDs because these NPs may be introduced into the environment upon disposal of waste products containing QDs following the anticipated increase in their production and use. Because the properties of QDs are defined primarily by their composition and size, it is imperative that QD size be measured accurately and quickly. Current methods for measuring the size of QDs tend to be relatively slow, require large amounts of sample and may not be suitable for environmental or biological samples. Capillary zone electrophoresis (CZE), with its inherently high separation efficiency based on the size-to-charge ratio of analytes, holds promise for efficient size determination of NPs in aqueous samples.This review examines the potential use of CZE in characterizing and separating QDs compared to the conventional methods employed in determining size distribution of NPs. We briefly discuss the advantages and the limitations of commonly used techniques for size characterization.In addition to published literature, we present results from our laboratory using CZE with laser-induced fluorescence (LIF) to examine the effect of natural organic matter and buffer composition on the electrophoretic mobility of QDs. The use of CZE in environmental studies can provide insights into the degradation and the potential impacts of QDs upon exposure to environmental and biological matrices.  相似文献   

19.
Fine particles in air have a direct influence on human health because they carry toxic chemicals that can be deposited in the human lung when inhaled. Thus, particle size distribution and size dependent level of contamination of the airborne particles are important parameters for the study and assessment of environmental pollution. In this study, gravitational split-flow thin (SPLITT) fractionation (or GSF), a semi-preparative scale separation technique for particles, was applied for the continuous size sorting of airborne particles collected in urban area. About 2.0 g of airborne particles was fractionated into four different size intervals (<1.5, 1.5-2.5, 2.5-5.0, and >5.0 microm), and the collected fractions were examined by electron microscopy for particle size distribution and analyzed for the size dependent levels of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs). It was found that more than 60% of particles including dissolved matters in weight were smaller than 5.0 microm and they contained more than 86% of the total PCDD/Fs amount in airborne particles.  相似文献   

20.
Accurate Monte Carlo evaluation of the probability of inserting an additional particle of arbitrary size into a hard-sphere fluid at various densities allows a quantitative check on the scaled particle interpolation formula for this probability, which is rigorously known when the added particle is either very small or very large. The simple scaled particle formula is remarkably accurate due to a favorable choice of the functional dependence of the surface tension on curvature. The biggest deviation occurs at liquid-like densities where the insertion probability is about 20% larger for larger particles, indicating a larger probability of occurrence of larger density fluctuations, and resulting in a smaller (3%) excess chemical potential than the simple theory predicts. On the other hand, at lower densities the insertion probability for large particles is slightly smaller than the theory predicts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号