首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, to consider all surface effects including surface elasticity, surface stress, and surface density, on the nonlinear free vibration analysis of simply-supported functionally graded Euler–Bernoulli nanobeams using nonlocal elasticity theory, the balance conditions between FG nanobeam bulk and its surfaces are considered to be satisfied assuming a cubic variation for the component of the normal stress through the FG nanobeam thickness. The nonlinear governing equation includes the von Kármán geometric nonlinearity and the material properties change continuously through the thickness of the FG nanobeam according to a power-law distribution of the volume fraction of the constituents. The multiple scale method is employed as an analytical solution for the nonlinear governing equation to obtain the nonlinear natural frequencies of FG nanobeams. The effect of the gradient index, the nanobeam length, thickness to length ratio, mode number, amplitude of deflection to radius of gyration ratio and nonlocal parameter on the frequency ratios of FG nanobeams is investigated.  相似文献   

2.
This paper examines the length-scale effect on the nonlinear response of an electrically actuated Carbon Nanotube (CNT) based nano-actuator using a nonlocal strain and velocity gradient (NSVG) theory. The nano-actuator is modeled within the framework of a doubly-clamped Euler–Bernoulli beam which accounts for the nonlinear von-Karman strain and the electric actuating forcing. The NSVG theory includes three length-scale parameters which describe two completely different size-dependent phenomena, namely, the inter-atomic long-range force and the nano-structure deformation mechanisms. Hamilton’s principle is employed to obtain the equation of motion of the nonlinear nanobeam in addition to its respective classical and non-classical boundary conditions. The differential quadrature method (DQM) is used to discretize the governing equations. The key aim of this research is to numerically investigate the influence of the nonlocal parameter and the strain and velocity gradient parameters on the nonlinear structural behavior of the carbon nanotube based nanobeam. It is found that these three length-scale parameters can largely impact the performance of the CNT based nano-actuator and qualitatively alter its resultant response. The main goal of this investigation is to understand the highly nonlinear response of these miniature structures to improve their overall performance.  相似文献   

3.
Nonlocal and surface effects become important for nanoscale devices. To model these effects on frequency response of linear and nonlinear nanobeam subjected to electrostatic excitation, we use Eringen’s nonlocal elastic theory and surface elastic theory proposed by Gurtin and Murdoch to modify the governing equation. Subsequently, we apply Galerkin’s method with exact mode shape including nonlocal and surface effects to get static and dynamic modal equations. After validating the procedure with the available results, we analyze the variation of pull-in voltage and frequency resonance by varying surface and nonlocal parameters. To do frequency analysis of nonlinear system, we solve nonlinear dynamic equation using the method of multiple scale. We found that the frequency response of nonlinear system reduces for fixed excitation as the surface and nonlocal effects increase. Also, we found that the nature of nonlinearity can be tuned from hardening to softening by increasing the nonlocal effects.  相似文献   

4.
A theoretical model is developed to study the dynamic stability and nonlinear vibrations of the stiffened functionally graded (FG) cylindrical shell in thermal environment. Von Kármán nonlinear theory, first-order shear deformation theory, smearing stiffener approach and Bolotin method are used to model stiffened FG cylindrical shells. Galerkin method and modal analysis technique is utilized to obtain the discrete nonlinear ordinary differential equations. Based on the static condensation method, a reduction model is presented. The effects of thermal environment, stiffeners number, material characteristics on the dynamic stability, transient responses and primary resonance responses are examined.  相似文献   

5.
In this paper, nonlinear dynamics, vibration and stability analysis of piezo-visco medium nanoshell resonator (PVM-NSR) based on functionally graded (FG) cylindrical nanoshell integrated with two piezoelectric layers subjected to visco-pasternak medium, electrostatic and harmonic excitations is investigated. Nonclassical method of the electro-elastic Gurtin–Murdoch surface/interface theory with von-Karman–Donnell's shell model as well as Hamilton's principle, the assumed mode method combined with Lagrange–Euler's are considered. Complex averaging method combined with arc-length continuation is used to achieve a numerical solution for the steady state vibrations of the system. The stability analysis of the steady state response is performed. The parametric studies such as the effects of different boundary conditions, different geometric ratios, structural parameters, electrostatic and harmonic excitation on the nonlinear frequency response and stability analysis are studied. The results indicate that near the natural frequency of the nanoshell, it will lead to resonance and will have large motion amplitude and near the resonant frequency, the nanoshell shows a softening type of nonlinear behavior, and the nanoshell bandwidth increases due to nonlinear factors. In this range, nanoshell has three different ranges of motion, of which two are stable and the other unstable, and so the jump phenomenon and saddle-node bifurcation are visible in the behavior of the system. Also piezoelectric voltage influences on static deformation and resonant frequency but has no significant effect on nonlinear behavior and bandwidth and also system very sensitive to the damping coefficient and due to decrease of nano shell stiffness, natural frequency decreases. And also, increasing or decreasing of some parameters lead to increasing or decreasing the resonance amplitude, resonant frequency, the system's instability, nonlinear behavior and bandwidth.  相似文献   

6.
In this paper, the nonlinear vibration and instability of a fluid-conveying nanopipe made of functionally graded (FG) materials with consideration of the initial geometric imperfection are investigated. The material properties are assumed to vary smoothly along the radial direction according to a power-law exponent form. The fluid-conveying FG nanopipe is modeled as a Euler-Bernoulli beam, and the governing equation is derived based on the nonlocal strain gradient theory incorporating the effects of Von-Karman geometrical nonlinearity and initial imperfection. The nonlinear frequency and critical fluid velocity are achieved via He's Hamiltonian approach. After verifying the present model with comparison of several previous studies, the effect of several different system parameters including the amplitude of the nonlinear oscillator, the initial geometric imperfection, size-dependent parameters, and the power-law index on the frequency response of the fluid-conveying FG nanopipe are explored. Moreover, the critical velocity of the conveying fluid under different system parameters is also investigated and discussed in detail. The developed size-dependent nonlinear model is expected to provide a possible theoretical way to guide the application of FG nanopipe as micro/nanofluidic devices.  相似文献   

7.
A modified continuum model of electrically actuated nanobeams is presented by incorporating surface elasticity in this paper. The classical beam theory is adopted to model the bulk, while the bulk stresses along the surfaces of the bulk substrate are required to satisfy the surface balance equations of the continuum surface elasticity. On the basis of this modified beam theory the governing equation of an electrically actuated nanobeam is derived and a powerful technology, analog equation method (AEM) is applied to solve this complex problem. Beams made from two materials: aluminum and silicon are chosen as examples. The numerical results show that the pull-in phenomena in electrically actuated nanobeams are size-dependent. The effects of the surface energies on the static and dynamic responses, pull-in voltage and pull-in time are discussed.  相似文献   

8.
Analytical solution for the steady-state response of an Euler–Bernoulli nanobeam subjected to moving concentrated load and resting on a viscoelastic foundation with surface effects consideration in a thermal environment is investigated in this article. At first, based on the Eringen's nonlocal theory, the governing equations of motion are derived using the Hamilton's principle. Then, in order to solve the equation, Galerkin method is applied to discretize the governing nonlinear partial differential equation to a nonlinear ordinary differential equation; solution is obtained employing the perturbation technique (multiple scales method). Results indicate that by increasing of various parameters such as foundation damping, linear stiffness, residual surface stress and the temperature change, the jump phenomenon is postponed and with increasing the amplitude of the moving force and the nonlocal parameter, the jump phenomenon occurs earlier and its frequency and the peak value of amplitude of vibration increases. In addition, it is seen that the non-linear stiffness and the critical velocity of the moving load are important factors in studying nanobeams subjected to moving concentrated load. Presence of the non-linear stiffness of Winkler foundation resulting nanobeam tends to instability and so, the jump phenomenon occurs. But, presence of the linear stiffness will lead to stability of the nanobeam. In the next sections of the paper, frequency responses of the nanobeam made of temperature-dependent material properties under multi-frequency excitations are investigated.  相似文献   

9.
This study analyzes the nonlinear free vibration and post-buckling of nanobeams with flexoelectric effect based on Eringen's differential model. The nanobeam is modeled based on Timoshenko beam's theory. The von-Kármán strain–displacement relation together with the electrical Gibbs free energy and Hamilton's principle are employed to derive equations of motion. The nonlinear free vibration frequencies are obtained for pinned–pinned (P–P) and clamped–clamped (C–C) boundary conditions. Multiple scales method is employed to obtain the closed-form solution for the nonlinear governing equations. By employing this methodology, the natural frequencies of nanobeams are obtained and their post-buckling behavior is examined. The influence of nonlocal parameter, amplitude ratio, and input voltage on the top surface and flexoelectricity constant on nonlinear free vibration and post-buckling characteristics of nanobeam is investigated. In this paper, it is concluded that the flexoelectricity has a significant effect on free vibration of the beams in nano-scale and its effect has to be considered in designing nano-electro-mechanical systems (NEMS) such as nano- generators and nano-sensors.  相似文献   

10.
A methodology of analyzing and characterizing the responses of a piezoelectric laminated microbeam system actuated by AC and DC voltages is developed in this research. The present development is based on the piezoelectric theory, Euler–Bernoulli hypothesis, and a newly developed periodicity–ratio (P–R) approach. The electric excitation loading on the beam is considered to be generated by AC and DC interactions. The control voltage of the piezoelectric layer and the geometric nonlinearity of the beam are also taken into account. The analysis of the nonlinear motion trend of the beam system with multiple parameters is carried out with the employment of the P–R criterion. The findings of the research are significant for the design of microbeam systems and micro-structures.  相似文献   

11.
In this paper, a nonlinear Euler-Bernoulli beam under a concentrated harmonic excitation with intermediate nonlinear support is investigated. Continuous expression for the kinetic energy, potential energy and dissipation function are constructed. An energy method based on the Lagrange equation combined with the Galerkin truncation is used for discretizing the governing equation. The Multi-dimensional incremental harmonic balance method (MIHBM) is derived, and the comparisons between the numerical results and the approximate analytical solutions based on the MIHBM verify the excellent accuracy of the MIHBM. The steady state dynamic of the beam is investigated by MIHBM. In order to investigate the energy transmission and understand the vibration response of the Euler-Bernoulli beam, the effects of the key parameters on the dynamic behaviors are studied and discussed, individually. The results show that the amplitude-frequency curves exhibits softening nonlinear behavior in the super-harmonic resonance region, and near resonant region the hardening nonlinear behavior is observed depending on the different parameters. Nonlinear dynamic analysis, such as bifurcation, 3-D frequency spectrum, waveform, frequency spectrum, phase diagram and Poincaré map, are also presented in order to study the influences of the key parameters on the vibration behaviors for the beam in a more accurate manner. In addition, the path to chaotic motion is observed to be through a sequence of the periodic motion and quasi-periodic motion.  相似文献   

12.
Nonlinear behavior of piezoceramics is a well-known phenomenon. For large stresses and/or strong electric fields it is described by various hysteresis curves. Quasi-static experiments exhibited hysteresis relations between excitation voltage and strain as well as between excitation voltage and electric displacement. This behavior can be modeled by using the classical Preisach model. On the other hand, typical nonlinearities of Duffing type such as jump phenomena, multiple stable amplitude responses at the same excitation voltage and frequency, and the presence of superharmonics in response spectra can be observed when piezoceramic actuators are excited near resonance, even at weak electric fields. In this paper, different experimental results for both quasi-static and dynamic nonlinear behavior and corresponding models are presented and compared. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this paper, post-buckling and nonlinear vibration analysis of geometrically imperfect beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to axial force are studied. The material properties of FGMs are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The assumptions of a small strain and moderate deformation are used. Based on Euler–Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this partial differential equation (PDE) problem, which has quadratic and cubic nonlinearities, is simplified into an ordinary differential equation (ODE) problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the imperfect functionally graded (FG) beams such as the effects of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogeneity are presented for future references. Results show that the imperfection has a significant effect on the post-buckling and vibration response of FG beams.  相似文献   

14.
The main objective of this study is to predict both the subharmonic and superharmonic resonances of the nonlinear oscillation of nanobeams in the presence of surface free energy effects. To this purpose, Gurtin–Murdoch elasticity theory is adopted to the classical beam theory in order to consider the surface Lame constants, surface mass density, and residual surface stress within the differential equations of motion. The Galerkin method together with the method of multiple scales is utilized to investigate the size-dependent response of nanobeams under hard excitations corresponding to various boundary conditions. A parametric analysis is carried out to indicate the influence of the surface elastic parameters on the frequency-response as well as amplitude-response of the nonlinear secondary resonance including multiple vibration modes and interactions between them. It is seen that for the superharmonic excitation, except for the clamped–free boundary condition, the jump phenomenon is along the hardening direction, while in the clamped–free end supports, it is along the softening direction. Moreover, it is revealed that for the subharmonic excitation, within a specific range of the excitation amplitude, the nanobeam is excited, and this range shifts to lower external force by incorporating the surface free energy effects. It is found that in the case of superharmonic excitation, the value of the excitation frequency associated with the bifurcation point at the peak of the frequency-response curve increases by taking the surface free energy effect into consideration.  相似文献   

15.
旋翼/机身非线性气弹耦合配平及稳定性分析   总被引:2,自引:0,他引:2  
根据Hamilton原理,采用中等变形梁理论,将桨叶离散为15自由度梁单元,用准定常气动模型建立旋翼/刚性机身耦合的有限元非线性方程,用时间有限元法进行气弹耦合配平计算,得到桨叶和机身运动的周期解.在此基础上,引入Peters动态入流模型分析耦合系统的稳定性.并研制相应的计算程序,可用于桨叶响应、桨叶和桨毂载荷、旋翼操纵等方面的分析计算.算例分析结果与相关文献吻合较好,且同时满足桨叶响应和配平方程的收敛性要求.  相似文献   

16.
A study on the buckling and dynamic stability of a piezoelectric viscoelastic nanobeam subjected to van der Waals forces is performed in this research. The static and dynamic governing equations of the nanobeam are established with Galerkin method and under Euler–Bernoulli hypothesis. The buckling, post-buckling and nonlinear dynamic stability character of the nanobeam is presented. The quasi-elastic method, Leibnitz’s rule, Runge–Kutta method and the incremental harmonic balanced method are employed for obtaining the buckling voltage, post-buckling characteristics and the boundaries of the principal instability region of the dynamic system. Effects of the electrostatic load, van der Waals force, creep quantity, inner damping, geometric nonlinearity and other factors on the post-buckling and the principal region of instability are investigated.  相似文献   

17.
New insights on theoretical modeling of size-dependent functionally graded (FG) nanobeams are provided by establishing a unified theory of 2n+1 order shear deformable model with the aids of nonlocal strain gradient elasticity. The unified model covers Euler-type (n = 0), Reddy-type (n = 1), 5th (n = 2), 7th (n = 3) order beam and etc., and the limiting situation n → ∞ predicts nonlocal strain gradient Timoshenko model. The mathematical difficulty for FG nonlocal parameter is particularly emphasized, and an attempt is made for the first time to overcome the difficulty. Theoretically, the governing equations and boundary conditions of 2n+1 order nonlocal strain gradient beams, especially with FG nonlocal parameter and FG strain gradient parameter, are systematically formulated. The difficulty for FG nonlocal parameter is satisfactorily solved with by adopting the present 2n+1 order beam theory. Analytically, solutions to bending and buckling analyses within the unified model are obtained, from which the analytical solutions for Euler- and Timoshenko-type beam can be recovered. Numerically, bending deflection and buckling critical load for Euler beam, Reddy beam, 5th-11th order beam and Timoshenko beam are depicted, of which the benchmark solutions for the 5th to 11th order beam are given for the first time. Meanwhile, potential extensions of the unified model into fractional order is discussed, where benchmark solutions for n = 1.1, 0.88, 0.77, 0.4and0.2 are listed. The influences of FG nonlocal parameter, dimensionless height and Poisson's ratio (or the ratio E/G) on the bending deflection and buckling critical load are systematically studied. The present work mainly contributes to theoretical developments and greatly facilitates the mechanical analysis of beam-type structures.  相似文献   

18.
A hybrid meshless technique based on composition of meshless local Petrov–Galerkin method (for spatial variables) and Newmark finite difference method (for time domain) is developed for natural frequencies analysis of thick cylinder made of functionally graded materials (FGMs). The FG cylinder is assumed to be under suddenly thermal loading, axisymmetric and plane strain conditions. The dynamic behaviors and time history of displacements are obtained in time domain using Green–Naghdi (GN) theory of coupled thermo-elasticity (without energy dissipation). Using fast Fourier transform (FFT) technique, the displacements are transferred to frequency domain and all natural frequencies are illustrated for various grading patterns of FGMs. The variations of mechanical properties in FG thick hollow cylinder are considered to be in nonlinear volume fraction law through radial direction. The presented hybrid meshless technique furnishes a ground to analyze the effects of various grading patterns of FGMs on natural frequencies, which are obtained employing GN coupled thermo-elasticity governing equations. Also, the frequency history and natural frequencies are illustrated for various grading patterns at several points across thickness of cylinder.  相似文献   

19.
In this paper, the linear and nonlinear vibrations of fractional viscoelastic Timoshenko nanobeams are studied based on the Gurtin–Murdoch surface stress theory. Firstly, the constitutive equations of fractional viscoelasticity theory are considered, and based on the Gurtin–Murdoch model, stress components on the surface of the nanobeam are incorporated into the axial stress tensor. Afterward, using Hamilton's principle, equations governing the two-dimensional vibrations of fractional viscoelastic nanobeams are derived. Finally, two solution procedures are utilized to describe the time responses of nanobeams. In the first method, which is fully numerical, the generalized differential quadrature and finite difference methods are used to discretize the linear part of the governing equations in spatial and time domains. In the second method, which is semi-analytical, the Galerkin approach is first used to discretize nonlinear partial differential governing equations in the spatial domain, and the obtained set of fractional-order ordinary differential equations are then solved by the predictor–corrector method. The accuracy of the results for the linear and nonlinear vibrations of fractional viscoelastic nanobeams with different boundary conditions is shown. Also, by comparing obtained results for different values of some parameters such as viscoelasticity coefficient, order of fractional derivative and parameters of surface stress model, their effects on the frequency and damping of vibrations of the fractional viscoelastic nanobeams are investigated.  相似文献   

20.
In the present work, the exact solutions for coupled analysis for bending and torsional case thin-walled functionally graded (FG) beams with non-symmetric single- and double-cells are presented for the first time. For this purpose, an accurate and efficient method is proposed to obtain the FG member stiffness matrix based on the series expansions of displacement components. Three types of material distributions are considered and the beam mechanical properties are graded along the wall thickness according to a power law of the volume fraction. The present beam model is on the basis of the Euler-Bernoulli beam theory and the Vlasov one for bending and torsional problems, respectively. The explicit expressions for displacement parameters are derived using the power series approach from the four coupled equilibrium equations. Finally, the FG member stiffness matrix is determined from the seven force-displacement relations. In order to show the accuracy and super convergence of the thin-walled FG beam element developed by this study, the numerical solutions are presented and compared with results obtained from the finite beam element based on the approximate interpolation polynomials and other available results. Especially, the effects of various structural parameters such as material distribution type, volume fraction index, boundary condition, and material ratio on the spatially coupled responses of FG box beams with non-symmetric single- and double-cells are parametrically investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号