首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
This paper deals with the problem of a pipe conveying fluid of interest in several engineering applications, such as micro-systems or drill-string dynamics. The deterministic stability analysis developed by Paidoussis and Issid (1974) is extended to the case for which there are model uncertainties induced by modeling errors in the computational model. The aim of this work is twofold: (1) to propose a probabilistic model for the fluid–structure interaction considering modeling errors and (2) to analyze the stability and reliability of the stochastic system. The Euler–Bernoulli beam model is used to model the pipe and the plug flow model is used to take into account the internal flow in the pipe. The resulting differential equation is discretized by means of the finite element method and a reduced-order model is constructed from some eigenmodes of the beam. A probabilistic approach is used to model uncertainties in the fluid–structure interaction. The proposed strategy takes into account global uncertainties related to the noninertial coupled fluid forces (related to damping and stiffness). The resulting random eigenvalue problem is used to analyze flutter and divergence unstable modes of the system for different values of the dimensionless flow speed. The numerical results show the random response of the system for different levels of uncertainty, and the reliability of the system for different dimensionless speeds and levels of uncertainty.  相似文献   

2.
The peristaltic flow of a Jeffrey fluid in an asymmetric channel is studied under long wavelength and low Reynolds number assumptions. The fluid is electrically conducting by a transverse magnetic field. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The flow is investigated in a wave frame of reference moving with the velocity of the wave. The expressions for stream function, axial velocity and axial pressure gradient have been obtained. The effects of various emerging parameters on the flow characteristics are shown and discussed with the help of graphs. The pumping characteristics, axial pressure gradient and trapping phenomenon have been studied. Comparison of various wave forms (namely sinusoidal, triangular, square and trapezoidal) on the flow is discussed.  相似文献   

3.
In this paper, the fluid–structure interaction problem in mechanical systems in which a high frequency vibrating solid structure interacts with the surrounding fluid flow is considered. Such a situation normally appears in many microelectromechanical systems like a wide variety of microfluidic devices. A different implementation of the residual‐based variational multiscale flow method is employed within the arbitrary Lagrangian–Eulerian formulation. The combination of the variational multiscale method with appropriate stabilization parameters is used to handle the so‐called small time step instability in the finite element analysis of the fluid part in the coupled fluid–structure interaction problem. The capability of the employed approach has been demonstrated through finite element study of a benchmark example and FEM simulation of two different mechanical micropumping devices. High frequency vibrations of the solid membrane are used to derive the fluid flow in these micropumps. Results of FEM simulations are shown to be in good agreement with available experimental data.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
An analysis is performed for flow and heat transfer of a steady laminar boundary layer flow of an electrically conducting fluid of second grade in a porous medium subject to a transverse uniform magnetic field past a semi-infinite stretching sheet with power-law surface temperature or power-law surface heat flux. The effects of viscous dissipation, internal heat generation of absorption and work done due to deformation are considered in the energy equation. The variations of surface temperature gradient for the prescribed surface temperature case (PST) and surface temperature for the prescribed heat flux case (PHF) with various parameters are tabulated. The asymptotic expansions of the solutions for large Prandtl number are also given for the two heating conditions. It is shown that, when the Eckert number is large enough, the heat flow may transfer from the fluid to the wall rather than from the wall to the fluid when Eckert number is small. A physical explanation is given for this phenomenon.  相似文献   

5.
The self-similarity solutions of the Navier-Stokes equations are constructed for an incompressible laminar flow through a uniformly porous channel with retractable walls under a transverse magnetic field. The flow is driven by the expanding or contracting walls with different permeability. The velocities of the asymmetric flow at the upper and lower walls are different in not only the magnitude but also the direction. The asymptotic solutions are well constructed with the method of boundary layer correction in two cases with large Reynolds numbers, i.e., both walls of the channel are with suction, and one of the walls is with injection while the other one is with suction. For small Reynolds number cases, the double perturbation method is used to construct the asymptotic solution. All the asymptotic results are finally verified by numerical results.  相似文献   

6.
7.
This paper deals with the small oscillations of two circular cylinders immersed in a viscous stagnant fluid. A new theoretical approach based on an Helmholtz expansion and a bipolar coordinate system is presented to estimate the fluid forces acting on the two bodies. We show that these forces are linear combinations of the cylinder accelerations and velocities, through viscous fluid added coefficients. To assess the validity of this theory, we consider the case of two equal size cylinders, one of them being stationary while the other one is forced sinusoidally. The self-added mass and damping coefficients are shown to decrease with both the Stokes number and the separation distance. The cross-added mass and damping coefficients tend to increase with the Stokes number and the separation distance. Compared to the inviscid results, the effect of viscosity is to add a correction term which scales as Sk12. When the separation distance is sufficiently large, the two cylinders behave as if they were independent and the Stokes predictions for an isolated cylinder are recovered. Compared to previous works, the present theory offers a simple and flexible alternative for an easy determination of the fluid forces and related added coefficients. To our knowledge, this is also the first time that a numerical approach based on a penalization method is presented in the context of fluid–structure interactions for relatively small Stokes numbers, and successfully compared to theoretical predictions.  相似文献   

8.
In the present study, we investigated the effects of slip and induced magnetic field on the peristaltic flow of a Jeffrey fluid in an asymmetric channel. The governing two‐dimensional equations for momentum, magnetic force function and energy are simplified by using the assumptions of long wavelength and low but finite Reynolds number. The reduced problem has been solved by Adomian decomposition method (ADM) and closed form solutions have been presented. Further, the exact solution of the proposed problem has also been computed and the mathematical comparison shows that both solutions are almost similar. The effects of pertinent parameters on the pressure rise per wavelength are investigated using numerical integration. The expressions for pressure rise, friction force, velocity, temperature, magnetic force function and the stream lines against various physical parameters of interest are shown graphically. Moreover, the behavior of different kinds of wave shape are also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The problem of flow and heat transfer of an electrically conducting non-Newtonian fluid over a continuously moving cylinder in the presence of a uniform magnetic field is analyzed for the case of power-law variation in the temperature and concentration at the cylinder surface. A diffusion equation with a chemical reaction source term is taken into account. The governing non-similar partial differential equation are solved numerically by employing shooting method. The effects of various parameters on the velocity, temperature and concentration profiles as well as the heat and mass transfer rate from the cylinder surface to the surrounding fluid are presented graphically and in tabulated form.  相似文献   

10.
By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and by appling topology theory, the topological structures and vortex structure in the transverse section of a blade cascade were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex, and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex. Foundation items: 973 Project of China; the Doctoral Foundation of Education Ministry of China (EDAF24403003) Biography: YANG Qing-hai (1969−)  相似文献   

11.
The distribution of pressure, velocity, and electrical potential has been investigated for a mercury flow in insulated rectangular ducts with a large side ratio (Hartmann-type flow). The ranges of variation of the Reynolds, Hartmann, and Stewart numbers were 7·102R5·105, 0H490, and 0N24, respectively. Special attention is given to the sections of the channel where the flow enters and leaves the magnetic field. In these zones the pressure is sharply nonuniform and the velocity profiles in a plane perpendicular to the field acquire an M shape. A relation is established between the length of the entrance section, where the flow is three-dimensional, and the MHD similarity criteria. It is shown that ducts which are hydraulically smooth in the absence of a magnetic field become increasingly rough as the field grows stronger. Data are obtained on the resistance coefficient for a stabilized flow measured in a magnetic field and on the dependence of the critical Reynolds number on the Hartmann number.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 10–21, July–August, 1971.  相似文献   

12.
In the present article, we have studied the effects of inclined magnetic field on the peristaltic flow of Jeffrey fluid through the gap between two coaxial inclined tubes. The inner tube is rigid, whereas the outer tube has sinusoidal wave traveling down its wall. The governing equations are simplified using long wave length and low Reynolds number approximations. Exact and numerical solutions have been derived for velocity profile. The expressions for pressure rise and friction force are calculated using numerical integration. Graphical results and trapping phenomenon is presented at the end of the article to see the physical behavior of different parameters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号