首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work is devoted to analyzing a thermal shock problem of an elastic strip made of functionally graded materials containing a crack parallel to the free surface based on a generalized fractional heat conduction theory. The embedded crack is assumed to be insulated. The Fourier transform and the Laplace transform are employed to solve a mixed initial-boundary value problem associated with a time-fractional partial differential equation. Temperature and thermal stresses in the Laplace transform domain are evaluated by solving a system of singular integral equations. Numerical results of the thermoelastic fields in the time domain are given by applying a numerical inversion of the Laplace transform. The temperature jump between the upper and lower crack faces and the thermal stress intensity factors at the crack tips are illustrated graphically, and phase lags of heat flux, fractional orders, and gradient index play different roles in controlling heat transfer process. A comparison of the temperature jump and thermal stress intensity factors between the non-Fourier model and the classical Fourier model is made. Numerical results show that wave-like behavior and memory effects are two significant features of the fractional Cattaneo heat conduction, which does not occur for the classical Fourier heat conduction.  相似文献   

2.
In this work we formulate a nonlinear mathematical model for the thermoelastic beam assuming the Fourier heat conduction law. Boundary conditions for the temperature are imposed on the ending cross sections of the beam. A careful analysis of the resulting steady states is addressed and the dependence of the Euler buckling load on the beam mean temperature, besides the applied axial load, is also discussed. Finally, under some simplifying assumptions, we deduce the model for the bending of an extensible thermoelastic beam with fixed ends. The behavior of the resulting dissipative system accounts for both the elongation of the beam and the Fourier heat conduction. The nonlinear term enters the motion equation, only, while the dissipation is entirely contributed by the heat equation, ruling the thermal evolution.  相似文献   

3.
针对不同温度装配件间接触界面的局部滑移问题,建立了三维稳态热弹性局部滑移接触的半解析求解模型.基于热弹性理论与热传导方程,构建了半空间受热流载荷和力载荷作用下的频响函数并建立了相应的影响系数矩阵.借助离散卷积-快速Fourier变换等数学工具,实现了针对高温压头与热弹性半空间局部滑移接触问题的高效求解.接触界面间的热量传递满足Fourier热传导定律,并且黏/滑状态由Coulomb定律确定.基于该半解析模型分析了不同荷载及温差对表面法向压力分布、摩擦力分布、刚体位移及接触区黏/滑演化行为的影响.研究结果表明,当法向荷载和切向荷载一定时,温差的上升会导致接触区域的减小,引起接触面法向压力及摩擦力的峰值增大,并且会显著影响黏着区与滑移区的分布情况.  相似文献   

4.
This paper is concerned with the determination of the thermoelastic displacement, stress, conductive temperature, and thermodynamic temperature in an infinite isotropic elastic body with a spherical cavity. A general solution to the problem based on the two-temperature generalized thermoelasticity theory (2TT) is introduced. The theory of thermal stresses based on the heat conduction equation with Caputo’s time-fractional derivative of order α is used. Some special cases of coupled thermoelasticity and generalized thermoelasticity with one relaxation time are obtained. The general solution is provided by using Laplace’s transform and state-space techniques. It is applied to a specific problem when the boundary of the cavity is subjected to thermomechanical loading (thermal shock). Some numerical analyses are carried out using Fourier’s series expansion techniques. The computed results for thermoelastic stresses, conductive temperature, and thermodynamic temperature are shown graphically and the effects of two-temperature and fractional-order parameters are discussed.  相似文献   

5.
In polar coordinates, a discrete analog of the conjugate-operator model of a heat conduction problem is formulated to hold the structure of the original model. The difference scheme converges with second-order accuracy in the case of discontinuous parameters of the medium in the Fourier law and irregular grids. An efficient algorithm for solving the discrete conjugate-operator model when heat conduction tensor is a unit operator is proposed.  相似文献   

6.
We study an initial–boundary-value problem for a quasilinear thermoelastic plate of Kirchhoff & Love-type with parabolic heat conduction due to Fourier, mechanically simply supported and held at the reference temperature on the boundary. For this problem, we show the short-time existence and uniqueness of classical solutions under appropriate regularity and compatibility assumptions on the data. Further, we use barrier techniques to prove the global existence and exponential stability of solutions under a smallness condition on the initial data. It is the first result of this kind established for a quasilinear non-parabolic thermoelastic Kirchhoff & Love plate in multiple dimensions.  相似文献   

7.
A thermoelastic Cosserat rod with a heat flux along its length is modeled after reviewing a simple Cosserat rod model. Extended Kirchhoff constitutive relations that include thermal effects, and the associated heat conduction equation, are derived using the first law of thermodynamics. The rate of internal dissipation of the Cosserat rod is estimated by the Clausius–Duhem inequality. Nonlinear dynamic equations of the thermoelastic Cosserat rod, which extend the simple Cosserat rod model, are obtained. Dynamic equations of a planar thermoelastic Cosserat rod, the Timoshenko thermoelastic beam, and the planar Euler–Bernoulli thermoelastic beam are derived as a special case within the framework of the thermoelastic Cosserat rod.  相似文献   

8.
In this paper, a discrete analog of a conjugate-operator model preserving the structure of the original model is constructed on non-matching grids for a heat conduction problem. Numerical experiments show that the difference scheme converges with second-order accuracy for the case of discontinuous parameters of the medium in the Fourier law and non-uniform grids.  相似文献   

9.
非均匀变厚度圆盘的定常热传导   总被引:1,自引:1,他引:0  
本文采用阶梯折算法,求得了任意非均匀变厚度圆盘定常热传导问题的一般解.并通过算例,对阶梯折算法的误差进行了分析.结果表明,该方法对于求解各类变系数常微分方程是十分有效的.  相似文献   

10.
It is important to investigate the effects of heat conduction of crack interior on thermoelastic fields of a cracked material. In this paper, an extended thermal-medium crack model is proposed to address the influences of the thermal conductivity inside an opening crack on the induced thermoelastic fields. Then the problem of a penny-shaped crack in a transversely isotropic material is investigated under applied mechanical and uniform heat flow loadings. Based on the Hankel transform technique, the governing partial differential equations are transformed to ordinary differential equations, then to a system of coupled dual integral equations. The thermoelastic fields around the penny-shaped crack are obtained explicitly by solving the derived dual integral equations. Numerical results are reported to show the influences of the thermal conductivity of crack interior on partial insulation coefficient, temperature change across crack and thermal stress intensity factor. As compared to the known thermal-medium crack model, the proposed one exhibits more applicability.  相似文献   

11.
In this paper we consider a one-dimensional linear thermoelastic system of Timoshenko type, where the heat conduction is given by Green and Naghdi theories. We prove a general decay result, from which the exponential and polynomial decays are only special cases.  相似文献   

12.
就各向同性的无限弹性体,具有一个球形空腔时,从双温广义热弹性理论(2TT)角度,研究三相滞后热方程的热弹性相互作用问题.在三相滞后理论中,热传导方程是一个含时间四阶导数的、双曲型的偏微分方程.假设无限介质初始时静止,通过Laplace变换,将基本方程用向量矩阵微分方程的形式表示,然后通过状态空间法求解.将得到的通解应用于特殊问题:空腔边界上承受着热荷载(热冲击和坡型加热)和力学荷载.使用Fourier级数展开技术,实现Laplace变换的求逆.计算了铜类材料物理量的数值解.图形显示,两种模型:带能量耗散的双温Green-Naghdi理论(2TGNIII)和双温3相滞后模型(2T3相)明显不同.还对双温和坡型参数的影响进行了研究.  相似文献   

13.
This article investigates the structural stability in several thermomechanics and heat conduction theories as well as the convergence of these theories to the classical versions of the thermoelasticity and heat conduction. We consider first the Lord–Shulman theory of thermoelasticity. We study the structural stability with respect to the relaxation parameter and the convergence of the solutions when the relaxation parameter tends to zero. Second we study the dual-phase-lag theory. Assuming that the relaxation parameters are small we consider the Taylor series in which only the first powers of the phase-lag parameters are retained. In this situation we consider the heat equation and study the structural stability and the convergence with respect to the phase-lag of the gradient of temperature. In the last part of the article, we consider the thermoelastic theory proposed by Chandrasekharaiah and Tzou. We study the structural stability and the convergence with respect to both relaxation parameters that describe this theory  相似文献   

14.
In this paper, we consider a linear damped porous thermoelastic system of memory type where the heat conduction is given by Cattaneo’s Law . We establish a general decay results using an appropriate Lyapunov functional.  相似文献   

15.
16.
We study the thermoelastic system in a domain with moving boundary, which was obtained when, instead of the Fourier’s law for the heat flux relation, we followed the linearized model proposed by Coleman and Gurtin [3] and Gurtin and Pipkin [6] about the memory theory of heat conduction. We show the existence, uniqueness and exponential decay rate of global regular solutions.  相似文献   

17.
In this article the characteristics of the extensional and flexural modes, propagating in a thermoelastic orthotropic layer lying over a viscoelastic half-space, are analyzed. The complete analysis is carried out in the framework of a thermodynamically consistent hyperbolic type heat conduction model without energy dissipation. The normal-mode-analysis is adopted and a general form of dispersive equation is derived for an anisotropic thermoelastic layered medium. A prominent distinction with the isotropic elastic solids is observed in the symmetric as well as anti-symmetric modes of dispersion curves. In turn, such deformation reshapes the wave propagation while the deformation stiffening changes significantly the phase velocities of the wave till the acoustic radiation stresses are balanced by elastic stresses in the current configuration of the hyperelastic medium.  相似文献   

18.
In this paper we analyze, from the numerical point of view, a dynamic thermoelastic problem. Here, the so-called exact heat conduction model with a delay term is used to obtain the heat evolution. Thus, the thermomechanical problem is written as a coupled system of partial differential equations, and its variational formulation leads to a system written in terms of the velocity and the temperature fields. An existence and uniqueness result is recalled. Then, fully discrete approximations are introduced by using the classical finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. A priori error estimates are proved, from which the linear convergence of the algorithm could be derived under suitable additional regularity conditions. Finally, a two-dimensional numerical example is solved to show the accuracy of the approximation and the decay of the discrete energy.  相似文献   

19.
20.
The nonlinear thermoelastic behavior of orthotropic layered slabs and cylinders including radiation boundaries, temperature-dependent material properties, and stress-dependent layer interface conditions is investigated. A one-dimensional finite element formulation employing quadratic layer and linear interface elements is used to perform the analyses. The transient heat conduction portion of the program is temporally discretized via an implicit linear time interpolation algorithm which includes Crank-Nicolson, Galerkin, and Euler backward differencing. The nonlinear heat conduction equations are iteratively evaluated using a modified Newton-Raphson scheme. Direct iteration between heat conduction and stress analysis is employed when stress-dependent interface thermal resistance coefficients are utilized. Verification problems are presented to demonstrate the accuracy of the finite element code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号