首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundTo evaluate 3-dimensional amide proton transfer weighted (APTw) imaging for type I endometrial carcinoma (EC), and investigate correlations of Ki-67 labelling index with APTw and intravoxel incoherent motion (IVIM) imaging.Methods54 consecutive patients suspected of endometrial lesions underwent pelvic APTw and IVIM imaging on a 3 T MR scanner. APTw values and IVIM-derived parameters (Dt, D*, f) were independently measured by two radiologists on 22 postoperative pathological confirmed of type I EC lesions. Results were compared between histological grades and Ki-67 proliferation groups. ROC analysis was performed. Pearson's correlation analysis was performed for APTw values and IVIM-derived parameters with Ki-67 labeling index.ResultsAPTw values and Dt, D*, f of all type I EC were 2.9 ± 0.1%, 0.677 ± 0.027 × 10−3 mm2/s, 31.801 ± 11.492 × 10−3 mm2/s, 0.179 ± 0.050 with inter-observer ICC 0.996, 0.850, 0.956, 0.995, respectively. APTw values of Ki-67 low-proliferation group (<30%, n = 8) were 2.5 ± 0.2%, significantly lower than the high-proliferation group (>30%, n = 14) with APTw values of 3.1 ± 0.1% (p = 0.016). Area under the curve was 0.768. APTw values of type I EC were moderately positively correlated with Ki-67 labelling index (r = 0.583, p = 0.004). There was no significant difference of Dt (p = 0.843), D* (p = 0.262), f (p = 0.553) between the two groups. No correlation was found between IVIM-derived parameters and Ki-67 labelling index (Dt, p = 0.717; D* p = 0.151; f, p = 0.153).Conclusion3D TSE APTw imaging is a feasible approach for detecting type I EC. Ki-67 labeling index positively moderately correlates with APTw not with IVIM.  相似文献   

2.
PurposeThis study aims to assess the usefulness of diffusion tensor imaging (DTI) as a noninvasive method for the evaluation of histological grade and lymph node metastasis in patients with oral carcinoma (OC).Materials and methodsThirty-six consecutive patients with histologically confirmed OC underwent examination by 3-T MRI. DTI was performed using a single-shot echo-planar imaging sequence with b values of 0 and 1000 s/mm2 and motion-probing gradients in 12 noncollinear directions. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) maps were compared with histopathological findings. The DTI parameters were correlated with the histological grade of the OCs based on the World Health Organization grading criteria and the presence or absence of lymph node metastasis.ResultsThe FA values (0.275 ± 0.058) of OC were significantly lower than those of normal tongue, muscle, and parotid glands (P < 0.001 for all), and the MD, AD, and RD values (1.220 ± 0.149, 1.434 ± 0.172, and 1.019 ± 0.165 × 10−3 mm2/s, respectively) were significantly higher than their respective normal values (P < 0.001 for all). Significant inverse correlations with histological grades were shown for FA, MD, AD, and RD values in OC patients (r = −0.862, r = −0.797, r = −0.747, and r = −0.844, respectively; P < 0.001 for all). In addition, there was a significant difference in the FA values of metastatic and nonmetastatic lymph nodes (0.186 vs. 0.276), MD (0.923 vs. 1.242 × 10−3 mm2/s), AD (1.246 vs. 1.621 × 10−3 mm2/s), and RD (0.792 vs. 1.100 × 10−3 mm2/s; P < 0.001 for all).ConclusionsDTI may be clinically useful for the noninvasive evaluation of histological grade and lymph node metastasis in OC patients.  相似文献   

3.
PurposeTo investigate the utility of diffusion kurtosis imaging (DKI) MRI for evaluation of renal fibrosis in rats with unilateral ureteral obstruction (UUO).MethodsTwenty-five rats had UUO, and ten rats were subjected to sham operation as control. DKI was performed on a 3.0 T MRI scanner on days 1, 3, 5, and 7 after ligation. All rats then underwent 18F-FDG dynamic PET to evaluate unilateral renal function, followed by histological analysis to examine α-smooth muscle actin (α-SMA) expression. DKI metrics were assessed among the time points and between two sides, and compared with maximum standardized uptake value (SUVmax), serum levels of creatinine and urea, and fibrosis marker α-SMA.ResultsMean kurtosis (MK) on day 7, axial kurtosis (Ka) on days 3 and 7, mean diffusivity (MD) on days 1, 3, 5, and 7, and fractional anisotropy (FA) on days 3, 5, and 7 of cortex and medulla between the UUO and contralateral sides were significantly different (all p < 0.05). Over the course of UUO progression, there were significant changes in Ka, MD and FA of medulla (all p < 0.05). FA of medulla was positively correlated with SUVmax (r = 0.641, p < 0.001), and MD of cortex was negatively correlated with urea (r = −0.534, p = 0.001). MD of cortex was negatively correlated with α-SMA on UUO sides (r = −0.710, p < 0.001).ConclusionsDKI shows the potential for noninvasive assessment of renal fibrosis and unilateral renal function induced by UUO.  相似文献   

4.
5.
PurposeThis study investigated whether T1 values in native T1 mapping of 3T magnetic resonance imaging (MRI) of the liver were affected by the fatty component.MethodsThis prospective study involved 340 participants from a population-based cohort study between May 8, 2018 and August 8, 2019. Data obtained included: (1) hepatic stiffness according to magnetic resonance elastography (MRE); (2) T1 value according to T1 mapping; (3) fat fraction and iron concentration from multi-echo Dixon; and (4) clinical indices of hepatic steatosis including body mass index, waist circumference, history of diabetes, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transpeptidase, and triglycerides. The correlations between T1 value and fat fraction, and between T1 value and liver stiffness were assessed using Pearson's correlation coefficient. The independent two-sample t-test was used to evaluate the differences in T1 values according to the presence or absence of hepatic steatosis, and the one-way analysis of variance was used to evaluate the difference in T1 value by grading of hepatic steatosis according to MRI-based proton density fat fraction (PDFF). In addition, univariate and multivariate linear regression analyses were performed to determine whether other variables influenced the T1 value.ResultsT1 value showed a positive correlation with the fat fraction obtained from PDFF (r = 0.615, P < 0.001) and with the liver stiffness obtained from MRE (r = 0.370, P < 0.001). Regardless of the evaluation method, the T1 value was significantly increased in subjects with hepatic steatosis (P < 0.001). When comparing hepatic steatosis grades based on MRI-PDFF, the mean T1 values were significantly different in all grades, and the T1 value tended to increase as the grade increased (P < 0.001, P for trend <0.001). On multiple linear regression analysis, the T1 value was influenced by MRI-PDFF, calculated liver iron concentration, liver stiffness, and serum aspartate aminotransferase level.ConclusionThe T1 value obtained by current T1 mapping of 3T MRI was affected by the liver fat component and several other factors such as liver stiffness, iron concentration, and inflammation.  相似文献   

6.
AimTo assess the value of callosal morphological and microstructural integrity in assessing different cognitive domains, fatigue and depression in mildly disabled multiple sclerosis (MS) patients.Materials and methodsWe assessed 29 mildly disabled MS patients and 15 healthy controls using 3T magnetic resonance images (T1-weighted, FLAIR and DTI) and neuropsychological tests assessing different cognitive functions, depression and fatigue. We compared the added value of morphological measures (corpus callosum area corrected for total intracranial volume, index, circularity and the more detailed thickness profile) and diffusion features (fractional anisotropy and mean diffusivity) in multilinear models including standard clinical and whole-brain parameters in assessing neuropsychological scores.ResultsEven in mildly disabled MS patients, a significant reduction of the corpus callosum (p < 0.001) was observed in comparison to healthy controls. Callosal area, index and circularity were significantly (p < 0.002) related to whole-brain white matter volume, T2 lesion load and deep grey matter volume, but not with cortical grey matter.The combination of commonly used imaging and clinical parameters explained between 7% (Fatigue) and 50% (processing speed, verbal memory) of the adjusted variance. Inclusion of the mean diffusivity increased the adjusted R2 significantly to 69% (p = 0.004) and 71% (p = 0.002) for visuospatial and verbal memory respectively.ConclusionOur results show that callosal features may be used as an alternative to measuring whole-brain volumes. Furthermore, the microstructural integrity of the corpus callosum can help to predict an MS patient's memory performance.  相似文献   

7.
Diffusion tensor imaging (DTI) was performed on 25 patients with neurocysticercosis (NCC). The aim of this study was to investigate the changes in DTI measures during the evolutionary course of NCC lesions from vesicular to calcified stage in the brain. DTI measures were quantified from the NCC lesions of all patients. On the basis of conventional imaging findings, NCC lesions were classified into vesicular, vesicular colloidal, granular nodular and calcified stages. Significant inverse correlation was observed between the evolutionary stage of NCC lesion and mean diffusivity (MD; r=−0.748, P<0.001) and spherical anisotropy (CS; r=−0.585, P<.001) values. Significant direct correlations were observed between evolutionary stages of NCC lesion and mean fractional anisotropy (FA; r=0.575, P<0.001), linear anisotropy (CL; r=0.478, p<0.001) and planar anisotropy (CP; r=0.561, p<0.001) values. Successive decrease in MD values calculated from NCC lesions was observed, moving from vesicular to granular nodular stage. On FA, CL and CP maps, a significant increase in signal intensity value was observed in calcified as compared to other stages. We conclude that DTI measures may indicate the evolutionary changes in NCC from vesicular to calcified stage.  相似文献   

8.
PurposeTo evaluate the perfusion parameters of inner and outer myometrium in healthy nulliparous and primiparous women who are and who are not currently using hormonal contraceptives by means of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).Material and methodsWe performed pelvic 1.5 T DCE-MRI on 98 women: 18 nulliparous non-users, 30 nulliparous users, 12 primiparous non-users and 38 primiparous users of hormonal contraception (mean age respectively 26.4, 25.8, 30.23 and 28.18 years). The nulliparous non-users underwent DCE-MRI investigations during their follicular, ovulatory and luteal phase. Perfusion parameters (iAUC/volume, Ktrans, Kep and Ve) were assessed in the anterior and posterior junctional zone (JZ), outer myometrium and cervix.ResultsIn nulliparous non-users, the mean Ktrans and iAUC/volume showed a decrease from follicular to luteal phase (0.82 vs 0.55 min 1 for Ktrans, p = 0/027 and 1.28 vs 0.68 for iAUC/volume, p < 0.001). The anterior JZ demonstrated lower Ktrans (p = 0.050) and higher Kep (p = 0.012), in nulliparous non-users, lower Ktrans in nulliparous users (p < 0.001) and lower Ve in primiparous users (p = 0.012) than the anterior outer myometrium. Ktrans at the anterior and posterior JZ wall in nulliparous users was lower than in non-users (p = 0.001 and p = 0.013) and Ve at the anterior JZ wall in primiparous users was lower than in non-users (p = 0.044).ConclusionThis study provides data on normal perfusion parameters of inner and outer myometrium, which may be potentially useful in assisted reproductive therapy.  相似文献   

9.
PurposeTo explore feasibility of using the vessel length on time-of-flight (TOF) or simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) MRA as an imaging biomarker for brain blood flow, by using arterial spin labeling (ASL) perfusion imaging and 3D phase contrast (PC) quantitative flow imaging as references.MethodsIn a population of thirty subjects with carotid atherosclerotic disease, the visible intracranial arteries on TOF and SNAP were semi-automatically traced and the total length of the distal segments was calculated with a dedicated software named iCafe. ASL blood flow was calculated automatically using the recommended hemodynamic model. PC blood flow was obtained by generating cross-sectional arterial images and semi-automatically drawing the lumen contours. Pearson correlation coefficients were used to assess the associations between the different whole-brain or hemispheric blood flow measurements.ResultsUnder the imaging protocol used in this study, TOF vessel length was larger than SNAP vessel length (P < 0.001). Both whole-brain TOF and SNAP vessel length showed a correlation with whole brain ASL and 3D PC blood flow measurements, and the correlation coefficients were higher for SNAP vessel length (TOF vs ASL: R = 0.554, P = 0.002; SNAP vs ASL: R = 0.711, P < 0.001; TOF vs 3D PC: R = 0.358, P = 0.052; SNAP vs 3D PC: R = 0.425, P = 0.019). Similar correlation results were observed for the hemispheric measurements. Hemispheric asymmetry index of SNAP vessel length also showed a significant correlation with hemispheric asymmetry index of ASL cerebral blood flow (R = 0.770, P < 0.001).ConclusionThe results suggest that length of the visible intracranial arteries on TOF or SNAP MRA can serve as a potential imaging marker for brain blood flow.  相似文献   

10.
PurposeTo elucidate the influence of through-plane heart motion on the assessment of aortic regurgitation (AR) severity using phase contrast magnetic resonance imaging (PC-MRI).ApproachA patient cohort with chronic AR (n = 34) was examined with PC-MRI. The regurgitant volume (RVol) and fraction (RFrac) were extracted from the PC-MRI data before and after through-plane heart motion correction and was then used for assessment of AR severity.ResultsThe flow volume errors were strongly correlated to aortic diameter (R = 0.80, p < 0.001) with median (IQR 25%;75%): 16 (14; 17) ml for diameter>40mm, compared with 9 (7; 10) ml for normal aortic size (p < 0.001). RVol and RFrac were underestimated (uncorrected:64 ± 37 ml and 39 ± 17%; corrected:76 ± 37 ml and 44 ± 15%; p < 0.001) and ~ 20% of the patients received lower severity grade without correction.ConclusionThrough-plane heart motion introduces relevant flow volume errors, especially in patients with aortic dilatation that may result in underestimation of the severity grade in patients with chronic AR.  相似文献   

11.
BackgroundThe aim of this study was to investigate changes in structural magnetic resonance imaging (MRI) according to the RANO criteria and perfusion- and permeability related metrics derived from dynamic contrast-enhanced MRI (DCE) and dynamic susceptibility contrast MRI (DSC) during radiochemotherapy for prediction of progression and survival in glioblastoma.MethodsTwenty-three glioblastoma patients underwent biweekly structural and perfusion MRI before, during, and two weeks after a six weeks course of radiochemotherapy. Temporal trends of tumor volume and the perfusion-derived parameters cerebral blood volume (CBV) and blood flow (CBF) from DSC and DCE, in addition to contrast agent capillary transfer constant (Ktrans) from DCE, were assessed. The patients were separated in two groups by median survival and differences between the two groups explored. Clinical- and MRI metrics were investigated using univariate and multivariate survival analysis and a predictive survival index was generated.ResultsMedian survival was 19.2 months. A significant decrease in contrast-enhancing tumor size and CBV and CBF in both DCE- and DSC-derived parameters was seen during and two weeks past radiochemotherapy (p < 0.05). A 10%/30% increase in Ktrans/CBF two weeks after finishing radiochemotherapy resulted in significant shorter survival (13.9/16.8 vs. 31.5/33.1 months; p < 0.05). Multivariate analysis revealed an index using change in Ktrans and relative CBV from DSC significantly corresponding with survival time in months (r2 = 0.843; p < 0.001).ConclusionsSignificant temporal changes are evident during radiochemotherapy in tumor size (after two weeks) and perfusion-weighted MRI-derived parameters (after four weeks) in glioblastoma patients. While DCE-based metrics showed most promise for early survival prediction, a multiparametric combination of both DCE- and DSC-derived metrics gave additional information.  相似文献   

12.
PurposeLonger latency of postural response in multiple sclerosis (MS) may be linked to imbalance and increased likelihood of falls. It may be caused by the compromised microstructural integrity in the spinal cord, as evidenced by slowed somatosensory conduction in the spinal cord. Thus, the purpose of this study is to investigate the correlation between latency of postural responses and microstructural integrity of the cervical spinal cord, the region particularly related to the disease severity in MS, using diffusion tensor imaging (DTI) metrics.MethodsSeventeen persons with MS with mild-to-moderate disease severity were enrolled in this study. Postural response latencies of each patient were measured using electromyography of the tibialis anterior muscle (TA) and gastrocnemius muscle (GN) in response to surface perturbations. Cervical spinal cord DTI images were obtained from each patient. DTI mean, radial, axial diffusivity, and fractional anisotropy (FA) were measured between segments C4 and C6. Correlations of DTI metrics with postural response latencies, expanded disability status scale (EDSS) scores, and 25-foot walk (T25FW) were assessed using the Spearman's rank correlation coefficient at α = 0.05.ResultsLower FA was significantly correlated with longer latencies measured on right TA in response to forward postural perturbations (r = −0.51, p = .04). DTI metrics showed no significant correlations with EDSS scores (r = −0.06–0.09, p = .73–0.95) or T25FW (r = −0.1–0.14, p = .6–0.94). DTI metrics showed no significant differences between subjects with and without spinal cord lesions (p = .2–0.7).ConclusionsOur results showed a significant correlation between lower FA in the cervical spinal cord and longer latencies measured on right TA in response to forward postural perturbations in persons with MS, suggesting that impaired cervical spinal cord microstructure assessed by DTI may be associated with the delayed postural responses.  相似文献   

13.
The cuprizone (CPZ) mouse model of demyelination was recognized and used to explore multiple sclerosis (MS)-like brain lesions. In this study, we assessed CPZ-treated mice using T2-weighted imaging and diffusion tensor imaging (DTI). C57BL/6 mice treated with 2 weeks of 0.2 % CPZ-containing diet (n = 10) and regular chow diet (n = 10) were scanned with a 7.0 T MRI scanner (Agilent, USA), respectively, using fast spin-echo and fast spin-echo DTI sequences. The normalized T2 signal intensity (normalized to the cerebrospinal fluid) was calculated and fractional anisotropy (FA value), mean diffusivity, axial diffusivity and radial diffusivity were measured in the brain region of the cerebral cortex (CTX), caudate putamen (CP), hippocampus (HP) and thalamus (TH). Compared with controls, increased normalized T2 signal intensities and reduced FA values (p < 0.05) were observed in the CTX, HP and CP (p < 0.01), but not in TH in cuprizone-fed mice. In the regions of reduced FA values, an increase in mean diffusivity (p < 0.05) and radial diffusivity (p < 0.05) was also found. Significant decreased axial diffusivity was only observed in CTX (p < 0.05). DTI is sensitive to detecting cuprizone-induced demyelination of C57BL/6 mice. This study suggests that CTX, HP and CP are more susceptible to cuprizone-induced demyelination than TH. Our results also indicate that the decrease of FA value may be more likely due to increased radial diffusivity.  相似文献   

14.
PurposeThe purpose of this paper is to investigate whether the IVIM parameters (D, D *, f) helps to determine the molecular subtypes and histological grades of breast cancer.MethodsFifty-one patients with breast cancer were included in the study. All subjects were examined by 3 T Magnetic Resonance Imaging (MRI). Diffusion-weighted imaging (DWI) was undertaken with 16 b-values. IVIM parameters [D (true diffusion coefficient), D* (pseudo-diffusion coefficient), f (perfusion fraction)] were calculated. Histopathological reports were reviewed to histological grade, histological type, and immunohistochemistry. IVIM parameters of tumors with different histological grades and molecular subtypes were compared.ResultsD* and f were significantly different between molecular subtypes (p = 0.019, p = 0.03 respectively). D* and f were higher in the HER-2 group and lower in Triple negative (−) group (D*:36.8 × 10−3 ± 5.3 × 10−3 mm2/s, f:29.5%, D*:29.8 × 10−3 ± 5.6 × 10−3 mm2/s, f:21.5% respectively). There was a significant difference in D* and f between HER-2 and Triple (−) subgroups (p = 0,028, p = 0.024, respectively). D* was also significantly different between the HER-2 group and the Luminal group (p = 0,041). While histological grades increase, D and f values tend to decrease, and D* tends to increase. While the Ki-67 index increases, D* and f values tend to increase, and D tend to decrease.ConclusionD* and f values measured with IVIM imaging were useful for assessing breast cancer molecular subtyping. IVIM imaging may be an alternative to breast biopsy for sub-typing of breast cancer with further research.  相似文献   

15.
PurposeHistogram analysis can better reflect tumor heterogeneity than conventional imaging analysis. The present study analyzed possible correlations between histogram analysis parameters derived from Intravoxel-incoherent imaging (IVIM) and histopathological features in rectal cancer (RC).MethodsSeventeen patients with histopathologically proven rectal adenocarcinomas were retrospectively acquired. In all cases, pelvic MRI was performed. Diffusion weighted imaging was obtained using a multi-slice single-shot echo-planar imaging sequence with b values of 0, 50, 200, 500 and 1000 s/mm2. Simplified IVIM analysis was performed using the IntelliSpace portal, version 10 and the following images were generated: f (perfusion fraction) map, D (true diffusion coefficient) map, and ADC map utilizing all b-values. Histogram based analysis of signal intensities was performed for every IVIM map using an in-house matlab tool. Histopathology was investigated using Ki 67 specimens with calculation of Ki 67-index and cellularity. CD31 stained specimens were used for calculation of microvessel density (MVD).ResultsThere were statistically significant correlations between Ki 67 index and mode derived from ADC as well as entropy from f, r=−0.50, p=.04 and r=−0.55, p=.02, respectively. MVD correlated well with parameters derived from f.ConclusionIVIM histogram analysis parameters can reflect histopathology in RC. ADC and D values are associated with proliferation potential. Perfusion fraction f is associated with MVD.  相似文献   

16.
BackgroundPrevious studies have demonstrated a correlation between Expanded Disability Status Scale (EDSS) and Diffusion Tensor Imaging (DTI) metrics, but the conclusions were based on evaluations of the entire cervical spinal cord.ObjectivesThe purpose of this study was to quantify the FA and MD values in the spinal cord of NMO patients, separating the lesion sites from the preserved sites, which has not been previously preformed. In addition, we attempted to identify a correlation with EDSS.MethodsDTI was performed in 11 NMO patients and 11 healthy individuals using a 1.5-T MRI scanner. We measured the FA and MD at ROIs positioned along the cervical spinal cord. The mean values of FA and MD at lesion, preserved and spinal cord sites were compared with those of a control group. We tested the correlations between the mean FA and MD with EDSS.ResultsFA in NMO patients was significantly reduced in lesion sites (0.44 vs. 0.55, p = 0.0046), preserved sites (0.46 vs. 0.55, p = 0.0015), and all sites (0.45 vs 0.55, p = 0.0013) while MD increased only in lesion sites (1.03 × 10 3 mm2/s vs. 0.90 × 10 3 mm2/s, p = 0.009). The FA demonstrated the best correlation with EDSS (r =  0.7603, p = 0.0086), particularly at lesion sites.ConclusionsThe results reinforce the importance of the FA index and confirm the hypothesis that NMO is a diffuse disease.  相似文献   

17.
PurposeTo compare the pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in gastric cancers of different histological type and Lauren classification, and to investigate whether DCE-MRI parameters correlate with vascular endothelial growth factor (VEGF) expression levels in gastric cancer.MethodsIncluded were 32 patients with gastric cancer who underwent DCE-MRI of the upper abdomen before tumor resection. DCE-MRI parameters including the volume transfer coefficient (Ktrans), reverse reflux rate constant (Kep), and extracellular extravascular volume fraction (Ve) were calculated from the tumor region. Post-operative specimens were used for determination of histological differentiation (i.e., non-mucinous, mucinous, or signet-ring-cell adenocarcinoma) as well as Lauren classification (intestinal type or diffuse type). VEGF expression was examined for assessing angiogenesis. DCE-MRI parameters with different histological type and Lauren classification were compared using independent samples t-test and analysis of variance, respectively. Correlations between DCE-MRI parameters and VEGF expression grades were tested using Spearman correlation analysis.ResultsAmong gastric adenocarcinomas of three different histological types, mucinous adenocarcinomas showed a higher Ve and lower Ktrans than the others (P < 0.01). Between the two Lauren classifications, the diffuse type showed a higher Ve than the intestinal type (P < 0.001). The mean Ktrans showed a significantly positive correlation with VEGF (r = 0.762, P < 0.001).ConclusionDCE-MRI permits noninvasive prediction of tumor histological type and Lauren classification and estimation of tumor angiogenesis in gastric cancer. DCE-MRI parameters can be used as imaging biomarkers to predict the biologic aggressiveness of a tumor as well as patient prognosis.  相似文献   

18.
PurposeTo explore the application of intravoxel incoherent motion diffusion-weighted imaging(IVIM-DWI) on account of field-of-view optimized and constrained undistorted single shot (FOCUS) and iteraterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation(IDEAL-IQ) sequences in evaluating the vertebral microenvironment changes of type 2 diabetes mellitus(T2DM) patients and the correlation with bone mineral density(BMD).Method128 T2DM patients (mean age 63.4 ± 5.28 years) underwent both dual-energy X-ray absorptiometry (DEXA) and spine MRI. The FOCUS IVIM-DWI and IDEAL-IQ derived parameters of the vertebral body(L1, L2, L3, L4)were measured on corresponding maps of the lumbar spine. The subjects were divided into 3 groups according to T-scores as follows: normal (n = 37), osteopenia (n = 43), and osteoporosis(n = 48) group.One-way analysis of variance (ANOVA) were used to compare the vertebral parameters(ADCslow, ADCfast, f, FF, R2*) among three BMD cohorts.Receiver operating characteristic (ROC) analyses and Spearman's rank correlation were performed to test the diagnostic performance and the correlation between them respectively.ResultsThere were significant differences in vertebral ADCslow, ADCfast, FF and R2* between the three groups (P < 0.05).Statistically, BMD was moderately negatively correlated with FF (r = −0.584, P < 0.001) and weakly positively with ADCslow (r = 0.334, P < 0.001), meanwhile moderately positively correlated with R2*(r = 0.509, P < 0.001) and ADCfast(0.545, P < 0.001).ADCfast was moderately negatively correlated with FF (r = −0.417, P < 0.001), weakly positively correlated with R2*(0.359, P < 0.001).Compared with the area under the curve (AUC) of ADCslow, ADCfast, FF and R2*, the AUC of ADCfast was higher in identifying between normal and abnormal(osteopenia and osteoporosis), normal from osteopenia, while the AUC of FF was higher in identifying osteopenia from osteoporosis.ConclusionsFOCUS IVIM-DWI and IDEAL-IQ of lumbar spine might be useful to evaluate the vertebral microenvironment changes of T2DM patients.  相似文献   

19.
PurposeTo determine magnetic resonance elastography (MRE)-derived stiffness of pancreas in healthy volunteers with emphasis on: 1) short term and midterm repeatability; and 2) variance as a function of age.MethodsPancreatic MRE was performed on 22 healthy volunteers (age range:20–64 years) in a 3 T–scanner. For evaluation of reproducibility of stiffness estimates, the scans were repeated per volunteer on the same day (short term) and one month apart (midterm). MRE wave images were analyzed using 3D inversion to estimate the stiffness of overall pancreas and different anatomic regions (i.e., head, neck, body, and tail). Concordance and Spearman correlation tests were performed to determine reproducibility of stiffness measurements and relationship to age.ResultsA strong concordance correlation (ρc = 0.99; p-value < 0.001) was found between short term and midterm repeatability pancreatic stiffness measurements. Additionally, the pancreatic stiffness significantly increased with age with good Spearman correlation coefficient (all ρ > 0.81; p < 0.001). The older age group (> 45 yrs) had significantly higher stiffness compared to the younger group (≤ 45 yrs) (p < 0.001). No significant difference (p > 0.05) in stiffness measurements was observed between different anatomical regions of pancreas, except neck stiffness was slightly lower (p < 0.012) compared to head and overall pancreas at month 1.ConclusionMRE-derived pancreatic stiffness measurements are highly reproducible in the short and midterm and increase linearly with age in healthy volunteers. Further studies are needed to examine these effects in patients with various pancreatic diseases to understand potential clinical applications.  相似文献   

20.
ObjectiveThe complex anatomical structures of cerebellopontine angle (CPA) pose a unique challenge to diffusion weighted imaging (DWI). This study aimed to compare the clinical utility of the prototypic 2D turbo gradient- and spin echo-BLADE-DWI (TGSE-BLADE-DWI) with that of readout-segmented echo-planar DWI (RESOLVE-DWI) and single-shot echo-planar DWI (SS-EPI-DWI) to visualize CPA anatomic structures and identify CPA tumors.MethodsA total of 8 volunteers and 36 patients with pathological CPA tumors were enrolled to perform the three DWI sequences at 3 T. Scan time of TGSE-BLADE-DWI, RESOLVE-DWI and SS-EPI-DWI was 5 min 51 s, 5 min 15 s and 1 min 22 s, respectively. Subjective analysis, including visualization of anatomical structures, geometric distortion, ghosting artifacts, lesion conspicuity, diagnostic confidence, and overall image quality of the three DWI sequences were scored and assessed. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) of CPA tumors were measured and compared.ResultsA total of 39 lesions were identified, TGSE-BLADE-DWI detected all of them, RESOLVE-DWI 36 and SS-EPI-DWI 27. Significant differences were found in all the subjective parameters among the three DWI sequences (all p < 0.001). TGSE-BLADE-DWI was significantly better than RESOLVE-DWI in visualization of CPA anatomical structures, geometric distortion, ghosting artifacts, lesion conspicuity, diagnostic confidence, and overall image quality (all p < 0.01), and RESOLVE-DWI showed significantly superior performance than SS-EPI-DWI in all parameters (all p < 0.001). CNRs and ADCs were not significantly different among the three DWI sequences (p = 0.355, p = 0.590, respectively). No significant differences were detected between TGSE-BLADE-DWI SNR and RESOLVE-DWI SNR (p = 0.058), or TGSE-BLADE-DWI SNR and SS-EPI-DWI SNR (p = 0.155).ConclusionCompared with RESOLVE-DWI and SS-EPI-DWI, TGSE-BLADE-DWI minimized geometric distortions and ghosting artifacts and demonstrated an improved ability for depicting CPA tumors with better lesion conspicuity.SummaryGeometric distortions and ghosting artifacts are found at bone-air interfaces using conventional diffusion-weighted imaging (DWI), which is a challenge for imaging cerebellopontine angle (CPA) tumors. Our study validated that geometric distortions and ghosting artifacts were not present on 2D turbo gradient- and spin-echo-BLADE-DWI scans, making this technique useful for visualizing CPA anatomic structures and diagnosing CPA tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号