首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeTo test the diagnostic performance of cardiovascular magnetic resonance (CMR) tissue-tracking (TT) to detect the presence of late gadolinium enhancement (LGE) in patients with a diagnosis of myocardial infarction (MI) or myocarditis (MYO), preserved left ventricular ejection fraction (LVEF) and no visual regional wall motion abnormalities (RWMA).MethodsWe selected consecutive CMR studies of 50 MI, 50 MYO and 96 controls. Receiving operating characteristic (ROC) curve and net reclassification index (NRI) analyses were used to assess the predictive ability and the incremental diagnostic yield of 2D and 3D TT-derived strain parameters for the detection of LGE and to measure the best cut-off values of strain parameters.ResultsOverall, cases showed significantly reduced 2D global longitudinal strain (2D-GLS) values compared with controls (−20.1 ± 3.1% vs −21.6 ± 2.7%; p = 0.0008). 2D-GLS was also significantly reduced in MYO patients compared with healthy controls (−19.7 ± 2.9% vs −21.9 ± 2.4%; p = 0.0001). 3D global radial strain (3D-GRS) was significantly reduced in MI patients compared with controls with risk factors (34.3 ± 11.8% vs 40.3 ± 12.5%, p = 0.024) Overall, 2D-GLS yielded good diagnostic accuracy for the detection of LGE in the MYO subgroup (AUROC 0.79; NRI (95% CI) = 0.6 (0.3, 1.02) p = 0.0004), with incremental predictive value beyond risk factors and LV function parameters (p for AUROC difference = 0.048). In the MI subgroup, 2D-GRS (AUROC 0.81; NRI (95% CI) = 0.56 (0.17, 0.95) p = 0.004), 3D-GRS (AUROC 0.82; NRI (95% CI) = 0.57 (0.17, 0.97) p = 0.006) and 3D global circumferential strain (3D-GCS) (AUROC 0.81; NRI (95% CI) = 0.62 (0.22, 1.01) p = 0.002) emerged as potential markers of disease. The best cut-off for 2D-GLS was −21.1%, for 2D- and 3D-GRS were 39.1% and 37.7%, respectively, and for 3D-GCS was −16.4%.ConclusionsAt CMR-tissue tracking analysis, 2D-GLS was a significant predictor of LGE in patients with myocarditis but preserved LVEF and no visual RWMA. Both 2D- and 3D-GRS and 2D-GCS yielded good diagnostic accuracy for LGE detection in patients with previous MI but preserved LVEF and no visual RWMA.  相似文献   

2.
BackgroundFeature tracking (FT) has emerged as a promising method to quantify myocardial strain using conventional cine magnetic resonance imaging (MRI). Extracellular volume fraction (ECV) by T1 mapping enables quantification of myocardial fibrosis. To date, the correlation between FT-derived left ventricular strain and ECV has not been elucidated yet. The aim of this study was to evaluate the relationship between myocardial strain by FT and ECV by T1 mapping in patients with non-ischemic dilated cardiomyopathy (NIDCM).MethodsA total of 57 patients with NIDCM (61 ± 12 years; 46 (81%) male)) and 15 controls (62 ± 11 years; 11 (73%) male)) were studied. Using a 1.5 T magnetic resonance scanner, pre- and post- T1 mapping images of the LV wall at the mid-ventricular level were acquired to calculate the ECV by a modified Look-Locker inversion recovery (MOLLI) sequence. The radial strain (RS), circumferential strain (CS), and longitudinal strain (LS) were assessed by the FT technique. The ECV and myocardial strain were compared using a 6-segment model at the mid-ventricular level.ResultsThe ECV and myocardial strain were evaluable in all 432 segments in 72 subjects. On a patient-based analysis, NIDCM patients had a significantly higher ECV (0.30 ± 0.07 vs. 0.28 ± 0.06, p = .007) and impaired myocardial strain than the control subjects (RS, 22.7 ± 10.3 vs. 30.3 ± 18.2, p < .01; CS, −6.47 ± 1.89 vs. −9.52 ± 5.15, p < .001; LS −10.2 ± 3.78 vs. −19.8 ± 4.30, p < .001, respectively). A significant linear correlation was found between the RS and ECV (r = −0.38, p < .001) and CS and ECV, (r = 0.38, p < .001). LS and ECV also correlated (r = 0.31, p < 0.001). On a segment-based analysis, there was a significant correlation between the ECV and RS and ECV and CS (all p values < .05). The intraclass correlation coefficient was good for the strain measurement (>0.80).ConclusionsIn patients with NIDCM, significant correlation was found between myocardial strain and ECV, suggesting the FT-derived myocardial strain might be useful as a non-invasive imaging marker for the detection of myocardial fibrosis without any contrast media.  相似文献   

3.
PurposeThe conventional volumetric approaches of measuring cardiac function are load-dependent, and are not able to discriminate functional changes in the infarct, transition and remote myocardium. We examined phase-dependent regional mechanical changes in the infarct, transition and remote regions after acute myocardial infarction (MI) in a preclinical mouse model using cardiovascular magnetic resonance imaging (CMR).MethodsWe induced acute MI in six mice with left anterior descending coronary artery ligation. We then examined cardiac (infarct, transition and remote-zone) morphology and function utilizing 9.4 T high field CMR before and 2 weeks after the induction of acute MI. Myocardial scar tissue was evaluated by using CMR with late gadolinium enhancement (LGE). After determining global function through volumetric analysis, regional wall motion was evaluated by measuring wall thickening and radial velocities. Strain rate imaging was performed to assess circumferential contraction and relaxation at the myocardium, endocardium, and epicardium.ResultsThere was abnormal LGE in the anterior walls after acute MI suggesting a successful MI procedure. The transition zone consisted of a mixed signal intensity, while the remote zone contained viable myocardium. As expected, the infarct zone had demonstrated severely decreased myocardial velocities and strain rates, suggesting reduced contraction and relaxation function. Compared to pre-infarct baseline, systolic and diastolic velocities (vS and vD) were significantly reduced at the transition zone (vS: −1.86 ± 0.16 cm/s vs −0.68 ± 0.13 cm/s, P < 0.001; vD: 1.86 ± 0.17 cm/s vs 0.53 ± 0.06 cm/s, P < 0.001) and remote zone (vS: −1.86 ± 0.16 cm/s vs −0.65 ± 0.12 cm/s, P < 0.001; vD: 1.86 ± 0.16 cm/s vs 0.51 ± 0.04 cm/s, P < 0.001). Myocardial peak systolic and diastolic strain rates (SRS and SRD) were significantly lower in the transition zone (SRS: −4.2 ± 0.3 s−1 vs −1.3 ± 0.2 s−1, P < 0.001; SRD: 3.9 ± 0.3 s−1 vs 1.3 ± 0.2 s−1, P < 0.001) and remote zone (SRS: −3.8 ± 0.3 s−1 vs −1.4 ± 0.3 s−1, P < 0.001; SRD: 3.5 ± 0.2 s−1 vs 1.5 ± 0.4 s−1, P = 0.006). Endocardial and epicardial SRS and SRD were similarly reduced in the transition and remote zones compared to baseline.ConclusionsThis study, for the first time, utilized state-of-the art high-field CMR algorithms in a preclinical mouse model for a comprehensive and controlled evaluation of the regional mechanical changes in the transition and remote zones, after acute MI. Our data demonstrate that CMR can quantitatively monitor dynamic post-MI remodeling in the transition and remote zones, thereby serving as a gold standard tool for therapeutic surveillance.  相似文献   

4.
PurposeLeft atrial (LA) structure and function are important markers of adverse cardiovascular outcomes. Tissue-tracking cardiovascular magnetic resonance (CMR) accurately quantifies LA volume, strain, and strain rate based on biplane long-axis imaging. We aimed to assess the accuracy of the LA indices quantification from single-plane tissue-tracking CMR.MethodsWe included 388 subjects (mean age  57±13, male 70%) whose cine CMR images in sinus rhythm were available in both four-chamber and two-chamber views: 162 patients from the Prospective Observational Study of Implantable Cardioverter-Defibrillators (PROSE-ICD) Study, 208 patients from atrial fibrillation cohort, and 18 healthy volunteers. The group was divided into the training set (n = 291) and the test set (n = 97). In the training set, we compared the LA indices derived from biplane imaging and single-plane imaging (a four-chamber view), and developed regression equations. In the test set, we used the regression equations to estimate the LA indices from the single-plane imaging, and quantified the accuracy of the estimation against the LA indices from the biplane.ResultsIn the training set, all the LA indices from the single-plane imaging tended to be systematically underestimated compared with those from the biplane imaging, however, the correlation coefficient was high (r2 = 0.73–0.90, p < 0.001). In the test set, LA volumetric indices showed excellent reproducibility (intra-class correlation coefficient (ICC): 0.91–0.92) with relatively low variability (16.3–22.3%); For LA strain and strain rate indices, reproducibility was excellent (ICC: 0.81–0.93), however, the variability was slightly higher than that of volumetric indices (21.7–25.4%).ConclusionsLA volumetric indices measured from single-plane tissue-tracking CMR are highly accurate and reproducible with reference to those derived from the standard biplane imaging. The reproducibility of LA strain and strain rate indices from single-plane tissue-tracking CMR is excellent but the variability is higher than that of the volumetric indices.  相似文献   

5.
ObjectivesTo assess the magnitude of myocardial displacement abnormalities and their alterations with the fibrosis, left-ventricular (LV) outflow tract obstruction (LVOTO) and hypertrophy in juveniles with hypertrophic cardiomyopathy (HCM).Study design.Fifty-five children [age 12,5 ± 4.6 years, 38 (69,1%) males, 19 (34,5%) with LVOTO] with HCM and 20 controls underwent cardiovascular magnetic resonance. The LV feature tracking (FT) derived strain and strain rates were quantified. Results of FT analysis were compared between HCM subjects and controls and between children with and without LVOTO.ResultsChildren with HCM exhibited decreased strain in both hypertrophied and nonhypertrophied segments versus controls. LV global longitudinal strain (LVGLS) rate (− 0.69 ± 0.04 vs − 0.91 ± 0.05, p = 0,04), LV circumferential strain (LVCR) rate (− 0.98 ± 0.09 vs − 1.27 ± 0.06, p = 0,02), LV radial strain (LVR) (18,5 ± 1.9 vs 27,4 ± 1.4, p < 0,01) and LVR rate (0,98 ± 0.1 vs 1,53 ± 0.08, p < 0,01) were substantially compromised in subjects with LVOTO vs without. In multivariable regression all LV myocardial dynamics markers, except for LVCR, exhibited a significant association with the degree of LVOTO. LVCR rate (β = 0,31, p = 0,02) and LVR (β =  0.24, p = 0,04) were related to LV mass and only LVCR rate (β = 0,15, p = 0,03) was associated with the amount of LV fibrosis.ConclusionsThe reduction of all indices of LV myocardial mechanics in juvenile HCM patients was global but particularly pronounced in hypertrophied segments of the LV. The majority of the LV strains and strain rates were substantially compromised in subjects with LVOTO compared to patients without the obstruction. Myocardial mechanics indices seemed to be related to the degree of LVOTO rather than either to mass or the amount of fibrosis.  相似文献   

6.
PurposeSafe, sensitive, and non-invasive imaging methods to assess the presence, extent, and turnover of myocardial fibrosis are needed for early stratification of risk in patients who might develop heart failure after myocardial infarction. We describe a non-contrast cardiac magnetic resonance (CMR) approach for sensitive detection of myocardial fibrosis using a canine model of myocardial infarction and reperfusion.MethodsSeven dogs had coronary thrombotic occlusion of the left anterior descending coronary arteries followed by fibrinolytic reperfusion. CMR studies were performed at 7 days after reperfusion. A CMR spin-locking T1ρ mapping sequence was used to acquire T1ρ dispersion data with spin-lock frequencies of 0 and 511 Hz. A fibrosis index map was derived on a pixel-by-pixel basis. CMR native T1 mapping, first-pass myocardial perfusion imaging, and post-contrast late gadolinium enhancement imaging were also performed for assessing myocardial ischemia and fibrosis. Hearts were dissected after CMR for histopathological staining and two myocardial tissue segments from the septal regions of adjacent left ventricular slices were qualitatively assessed to grade the extent of myocardial fibrosis.ResultsHistopathology of 14 myocardial tissue segments from septal regions was graded as grade 1 (fibrosis area, < 20% of a low power field, n = 9), grade 2 (fibrosis area, 20–50% of field, n = 4), or grade 3 (fibrosis area, > 50% of field, n = 1). A dramatic difference in fibrosis index (183%, P < 0.001) was observed by CMR from grade 1 to 2, whereas differences were much smaller for T1ρ (9%, P = 0.14), native T1 (5.5%, P = 0.12), and perfusion (− 21%, P = 0.05).ConclusionA non-contrast CMR index based on T1ρ dispersion contrast was shown in preliminary studies to detect and correlate with the extent of myocardial fibrosis identified histopathologically. A non-contrast approach may have important implications for managing cardiac patients with heart failure, particularly in the presence of impaired renal function.  相似文献   

7.
BackgroundCardiac magnetic resonance imaging (MRI) is emerging as an important imaging tool in the assessment of heart failure with preserved ejection fraction (HFpEF). This systematic review and meta-analysis aim to synthesise and consolidate the current literature on cardiac MRI for prognostication of HFpEF.Methods designSystematic review and meta-analysis. Data sources: Scopus (PubMed and Embase) for studies published between 2008 and 2019. Eligibility criteria for study selection were studies that evaluated the prognostic role of cardiac MRI in HFpEF. Random effects meta-analyses of the reported hazard ratios (HR) for clinical outcomes was performed.ResultsInitial screening identified 97 studies. From these, only nine (9%) studies met all the criteria. The main cardiac MRI methods that demonstrated association to prognosis in HFpEF included late gadolinium enhancement (LGE) assessment of scar (n = 3), tissue characterisation with T1-mapping (n = 4), myocardial ischaemia (n = 1) and right ventricular dysfunction (RVSD) (n = 1). The pooled HR for all 9 studies was 1.52 (95% CI 1.05–1.99, P < 0.01). Sub-evaluation by cardiac MRI methods revealed varying HRs: LGE (net n = 402, HR = 1.6, 95% CI 0.42–2.78, P = 0.008); T1-mapping (n = 1623, HR = 1.25, 95% CI 0.891–1.60, P < 0.001); myocardial ischaemia or RVSD (n = 325, HR = 3.19, 95% CI 0.30–6.08, P = 0.03).ConclusionThis meta-analysis demonstrates that multiparametric cardiac MRI has value in prognostication of patients with HFpEF. HFpEF patients with a detectable scar on LGE, fibrosis on T1-mapping, myocardial ischaemia or RVSD appear to have a worse prognosis.PROSPERO registration numberCRD42020187228.  相似文献   

8.
PurposeTo investigate right ventricular (RV) strain in patients without identified cardiac pathology using cardiac magnetic resonance tissue tracking (CMR TT).MethodsA total of 50 consecutive patients with no identified cardiac pathology were analyzed. RV longitudinal and circumferential strain was assessed by CMR TT. The age range was 4–81 years with a median of 32 years (interquartile range, 15 to 56 years).ResultsAnalysis time per patient was < 5 min. The peak longitudinal strain (Ell) was − 22.11 ± 3.51%. The peak circumferential strains (Ecc) for global, basal, mid-cavity and apical segments were as follows: − 11.69 ± 2.25%, − 11.00 ± 2.45%, − 11.17 ± 3.36%, − 12.90 ± 3.34%. There were significant gender differences in peak Ecc at the base (P = 0.04) and the mid-cavity (P = 0.03) with greater deformation in females than in males. On Bland-Altman analysis, peak Ell (mean bias, 0.22 ± 1.67; 95% CI − 3.05 to 3.49) and mid-cavity Ecc (mean bias, 0.036 ± 1.75; 95% CI, − 3.39 to 3.47) had the best intra-observer agreement and inter-observer agreement, respectively.ConclusionsRV longitudinal and circumferential strains can be quickly assessed with good intra-observer and inter-observer variability using TT.  相似文献   

9.
Left-ventricular (LV) strain measurements with the Displacement Encoding with Stimulated Echoes (DENSE) MRI sequence provide accurate estimates of cardiotoxicity damage related to breast cancer chemotherapy. This study investigated an automated LV chamber quantification tool via segmentation with a supervised deep convolutional neural network (DCNN) before strain analysis with DENSE images. Segmentation for chamber quantification analysis was conducted with a custom DeepLabV3+ DCNN with ResNet-50 backbone on 42 female breast cancer datasets (22 training-sets, eight validation-sets and 12 independent test-sets). Parameters such as LV end-diastolic diameter (LVEDD) and ejection fraction (LVEF) were quantified, and myocardial strains analyzed with the Radial Point Interpolation Method (RPIM). Myocardial classification was validated against ground-truth with sensitivity-specificity analysis, the metrics of Dice, average perpendicular distance (APD) and Hausdorff-distance. Following segmentation, validation was conducted with the Cronbach's Alpha (C-Alpha) intraclass correlation coefficient between LV chamber quantification results with DENSE and Steady State Free Precession (SSFP) acquisitions and a vendor tool-based method to segment the DENSE data, and similarly for myocardial strain analysis in the chambers. The results of myocardial classification from segmentation of the DENSE data were accuracy = 97%, Dice = 0.89 and APD = 2.4 mm in the test-set. The C-Alpha correlations from comparing chamber quantification results between the segmented DENSE and SSFP data and vendor tool-based method were 0.97 for LVEF (56 ± 7% vs 55 ± 7% vs 55 ± 6%, p = 0.6) and 0.77 for LVEDD (4.6 ± 0.4 cm vs 4.5 ± 0.3 cm vs 4.5 ± 0.3 cm, p = 0.8). The validation metrics against ground-truth and equivalent parameters obtained from the SSFP segmentation and vendor tool-based comparisons show that the DCNN approach is applicable for automated LV chamber quantification and subsequent strain analysis in cardiotoxicity.  相似文献   

10.
AimsTo develop a high-resolution, 3D late gadolinium enhancement (LGE) cardiovascular magnetic resonance imaging (MRI) technique for improved assessment of myocardial scars, and evaluate its performance against 2D breath-held (BH) LGE MRI using a surgically implanted animal scar model in the right ventricle (RV).Methods and resultsA k-space segmented 3D LGE acquisition using CENTRA-PLUS (Contrast ENhanced Timing Robust Acquisition with Preparation of LongitUdinal Signal; or CP) ordering is proposed. 8 pigs were surgically prepared with cardiac patch implantation in the RV, followed in 60 days by 1.5 T MRI. LGE with Phase-Sensitive Inversion Recovery (PSIR) were performed as follows: 1) 2DBH using pneumatic control, and 2) navigator-gated, 3D free-breathing (3DFB)-CP-LGE with slice-tracking. The animal heart was excised immediately after cardiac MR for scar volume quantification. RV scar volumes were also delineated from the 2DBH and 3DFB-CP-LGE images for comparison against the surgical standard. Apparent scar/normal tissue signal-to-noise ratio (aSNR) and contrast-to-noise ratio (aCNR) were also calculated.3DFB-CP-LGE technique was successfully performed in all animals. No difference in aCNR was noted, but aSNR was significantly higher using the 3D technique (p < 0.05). Against the surgical reference volume, the 3DFB-CP-LGE-derived delineation yielded significantly less volume quantification error compared to 2DBH-derived volumes (15 ± 10% vs 55 ± 33%; p < 0.05).ConclusionCompared to conventional 2DBH-LGE, 3DFB-LGE acquisition using CENTRA-PLUS provided superior scar volume quantification and improved aSNR.  相似文献   

11.
BackgroundCardiac magnetic resonance (CMR) flow quantification is typically performed using 2D phase-contrast (PC) imaging of a plane perpendicular to flow. 3D-PC imaging (4D-flow) allows offline quantification anywhere in a thick slab, but is often limited by suboptimal signal, potentially alleviated by contrast enhancement. We developed a non-contrast 4D-flow sequence, which acquires multiple overlapping thin slabs (MOTS) to minimize signal loss, and hypothesized that it could improve image quality, diagnostic accuracy, and aortic flow measurements compared to non-contrast single-slab approach.MethodsWe prospectively studied 20 patients referred for transesophageal echocardiography (TEE), who underwent CMR (GE, 3 T). 2D-PC images of the aortic valve and three 4D-flow datasets covering the heart were acquired, including single-slab, pre- and post-contrast, and non-contrast MOTS. Each 4D-flow dataset was interpreted blindly for ≥moderate valve disease and compared to TEE. Flow visualization through each valve was scored (0 to 4), and aortic-valve flow measured on each 4D-flow dataset and compared to 2D-PC reference.ResultsDiagnostic quality visualization was achieved with the pre- and post-contrast 4D-flow acquisitions in 25% and 100% valves, respectively (scores 0.9 ± 1.1 and 3.8 ± 0.5), and in 58% with the non-contrast MOTS (1.6 ± 1.1). Accuracy of detection of valve disease was 75%, 92% and 82%, respectively. Aortic flow measurements were possible in 53%, 95% and in 89% patients, respectively. The correlation between pre-contrast single-slab measurements and 2D-PC reference was weak (r = 0.21), but improved with both contrast enhancement (r = 0.71) and with MOTS (r = 0.67).ConclusionsAlthough non-contrast MOTS 4D-flow improves valve function visualization and diagnostic accuracy, a significant proportion of valves cannot be accurately assessed. However, aortic flow measurements using non-contrast MOTS is feasible and reaches similar accuracy to that of contrast-enhanced 4D-flow.  相似文献   

12.
PurposeThe aim of this study was to investigate the diagnostic value of myocardial deformation analysis based on the 17-segment heart model using non-contrast enhanced (CE) 2D tissue feature tracking (2D-FT) technique.Material and methodsSeventy patients with suspected myocarditis underwent a cardiovascular magnetic resonance (CMR) examination at 1.5 Tesla. A contrast-agent-free part of this CMR protocol was additionally performed in forty healthy volunteers (HV). Besides standard CMR data sets, 2D-FT derived segmental and global longitudinal, radial, and circumferential deformation parameters were analyzed. The 2D-FT results were compared to the combined findings from CMR imaging and endomyocardial biopsy (EMB).ResultsPatients were assigned to three groups depending on their ejection fraction (EF) (<40%, 40–55%, ≥55%). Compared to HV, impaired EF (<55%) was significantly correlated to reduced segmental and global strain and strain rate values. The circumferential deformation analysis was more sensitive to myocardial changes than longitudinal and radial analysis. The segmental strain/strain rate had an accuracy of 84.3%/70.0% for the diagnosis of an acute myocarditis, stated by EMB and CMR in 42 of 70 patients. In patients with preserved EF, acute myocarditis could be ruled out using only segmental strain analysis with a negative predictive value of 87.5%.ConclusionIn patients with suspected myocarditis, the deformation analysis based on the 17-segment heart model provides valuable information about functional myocardial inhomogeneity. This quantitative approach could be used in addition to the clinical standard CMR protocol and represents a promising tool in the framework of a prospective automatized multiparametric CMR imaging analysis.  相似文献   

13.
PurposeTo elucidate the influence of through-plane heart motion on the assessment of aortic regurgitation (AR) severity using phase contrast magnetic resonance imaging (PC-MRI).ApproachA patient cohort with chronic AR (n = 34) was examined with PC-MRI. The regurgitant volume (RVol) and fraction (RFrac) were extracted from the PC-MRI data before and after through-plane heart motion correction and was then used for assessment of AR severity.ResultsThe flow volume errors were strongly correlated to aortic diameter (R = 0.80, p < 0.001) with median (IQR 25%;75%): 16 (14; 17) ml for diameter>40mm, compared with 9 (7; 10) ml for normal aortic size (p < 0.001). RVol and RFrac were underestimated (uncorrected:64 ± 37 ml and 39 ± 17%; corrected:76 ± 37 ml and 44 ± 15%; p < 0.001) and ~ 20% of the patients received lower severity grade without correction.ConclusionThrough-plane heart motion introduces relevant flow volume errors, especially in patients with aortic dilatation that may result in underestimation of the severity grade in patients with chronic AR.  相似文献   

14.
PurposeConventional cardiac T2 mapping suffers from the partial-voluming effect in the endocardium and epicardium due to the co-presence of intra-cavity blood and epicardial fat. The aim of the study is to develop a novel single-breath-hold Fat-Saturated Dark-Blood (FSDB) cardiac T2-mapping technique to mitigate the partial-voluming and improve T2 accuracy.MethodsThe proposed FSDB T2-mapping technique combines T2-prepared bSSFP, a novel use of double inversion-recovery with heart-rate-adaptive TI, and spectrally-selective fat saturation to mitigate partial-voluming from both the blood and fat. FSDB T2 mapping was compared to conventional T2 mapping via simulations, phantom imaging, healthy-subject imaging (n = 8), and patient imaging (n = 7). In the healthy subjects, a high-resolution coplanar anatomical imaging was performed to provide a gold standard for segmentation of endocardium and epicardium. T2 maps were registered to the gold standard image to evaluate any inter-layer T2 difference, which is a surrogate for partial-voluming.ResultsSimulations and phantom imaging showed that FSDB T2 mapping was accurate in a range of heartrates, off-resonance, and T2 values, and blood/fat reasonably nulled in a range of heartrates. In healthy subjects, FSDB T2 mapping showed similar T2 values over different myocardial layers in all 3 short-axis slices (e.g. basal epicardial/mid-wall/endocardial T2 = 42 ± 2 ms/41 ± 1 ms/42 ± 1 ms), whereas conventional T2 mapping showed considerably increased T2 in the endocardium and epicardium (e.g. basal epicardial/mid-wall/endocardial T2 = 48 ± 3 ms/43 ± 1 ms/49 ± 3 ms). The homogeneous T2 in the FSDB T2 mapping increased the apparent LV-wall thickness by 25–41% compared with the conventional method.ConclusionsThe proposed technique improves accuracy of myocardial T2 mapping against partial-voluming associated with both fat and blood, facilitating a multi-layer T2 evaluation of the myocardium. This technique may improve utility of cardiac T2 mapping in diseases affecting the endocardium and epicardium, and in patients with a small heart.  相似文献   

15.
ObjectivesTo test the hypothesis that two-dimensional (2D) displacement encoding via stimulated echoes (DENSE) is a reproducible technique for the depiction of segmental myocardial motion in human subjects.Materials and methodsFollowing the approval of the institutional review board (IRB), 17 healthy volunteers without documented history of cardiovascular disease were recruited. For each participant, 2D DENSE were performed twice (at different days) and the images were obtained at basal, midventricular and apical levels of the left ventricle (LV) with a short-axis view. The radial thickening strain (Err), circumferential strain (Ecc), twist and torsion were calculated. The intra-, inter-observer and inter-study variations of DENSE-derived myocardial motion indices were evaluated using coefficient of variation (CoV) and intra-class correlation coefficient (ICC).ResultsIn total, there are 272 pairs of myocardial segments (data points) for comparison. There is good intra- and inter-observer reproducibility for all DENSE-derived measures in 17 participants. There is good inter-study reproducibility for peak Ecc (CoV = 19.64%, ICC = 0.8896, p < 0.001), twist (CoV = 33.11%, ICC = 0.9135, p < 0.001) and torsion (CoV = 13.96%, ICC = 0.8684, p < 0.001). There is moderate inter-study reproducibility for Err (CoV = 38.89%, ICC = 0.7022, p < 0.001).ConclusionDENSE is a reproducible technique for characterizing LV regional systolic myocardial motion on a per-segment basis in healthy volunteers.  相似文献   

16.
BackgroundTo evaluate 3-dimensional amide proton transfer weighted (APTw) imaging for type I endometrial carcinoma (EC), and investigate correlations of Ki-67 labelling index with APTw and intravoxel incoherent motion (IVIM) imaging.Methods54 consecutive patients suspected of endometrial lesions underwent pelvic APTw and IVIM imaging on a 3 T MR scanner. APTw values and IVIM-derived parameters (Dt, D*, f) were independently measured by two radiologists on 22 postoperative pathological confirmed of type I EC lesions. Results were compared between histological grades and Ki-67 proliferation groups. ROC analysis was performed. Pearson's correlation analysis was performed for APTw values and IVIM-derived parameters with Ki-67 labeling index.ResultsAPTw values and Dt, D*, f of all type I EC were 2.9 ± 0.1%, 0.677 ± 0.027 × 10−3 mm2/s, 31.801 ± 11.492 × 10−3 mm2/s, 0.179 ± 0.050 with inter-observer ICC 0.996, 0.850, 0.956, 0.995, respectively. APTw values of Ki-67 low-proliferation group (<30%, n = 8) were 2.5 ± 0.2%, significantly lower than the high-proliferation group (>30%, n = 14) with APTw values of 3.1 ± 0.1% (p = 0.016). Area under the curve was 0.768. APTw values of type I EC were moderately positively correlated with Ki-67 labelling index (r = 0.583, p = 0.004). There was no significant difference of Dt (p = 0.843), D* (p = 0.262), f (p = 0.553) between the two groups. No correlation was found between IVIM-derived parameters and Ki-67 labelling index (Dt, p = 0.717; D* p = 0.151; f, p = 0.153).Conclusion3D TSE APTw imaging is a feasible approach for detecting type I EC. Ki-67 labeling index positively moderately correlates with APTw not with IVIM.  相似文献   

17.
PurposeTo develop and evaluate a novel non-ECG triggered 2D magnetic resonance fingerprinting (MRF) sequence allowing for simultaneous myocardial T1 and T2 mapping and cardiac Cine imaging.MethodsCardiac MRF (cMRF) has been recently proposed to provide joint T1/T2 myocardial mapping by triggering the acquisition to mid-diastole and relying on a subject-dependent dictionary of MR signal evolutions to generate the maps. In this work, we propose a novel “free-running” (non-ECG triggered) cMRF framework for simultaneous myocardial T1 and T2 mapping and cardiac Cine imaging in a single scan. Free-running cMRF is based on a transient state bSSFP acquisition with tiny golden angle radial readouts, varying flip angle and multiple adiabatic inversion pulses. The acquired data is retrospectively gated into several cardiac phases, which are reconstructed with an approach that combines parallel imaging, low rank modelling and patch-based high-order tensor regularization. Free-running cMRF was evaluated in a standardized phantom and ten healthy subjects. Comparison with reference spin-echo, MOLLI, SASHA, T2-GRASE and Cine was performed.ResultsT1 and T2 values obtained with the proposed approach were in good agreement with reference phantom values (ICC(A,1) > 0.99). Reported values for myocardium septum T1 were 1043 ± 48 ms, 1150 ± 100 ms and 1160 ± 79 ms for MOLLI, SASHA and free-running cMRF respectively and for T2 of 51.7 ± 4.1 ms and 44.6 ± 4.1 ms for T2-GRASE and free-running cMRF respectively. Good agreement was observed between free-running cMRF and conventional Cine 2D ejection fraction (bias = −0.83%).ConclusionThe proposed free-running cardiac MRF approach allows for simultaneous assessment of myocardial T1 and T2 and Cine imaging in a single scan.  相似文献   

18.
PurposeTo investigate the in-vivo precision and clinical feasibility of 3D-QALAS - a novel method for simultaneous three-dimensional myocardial T1- and T2-mapping.MethodsTen healthy subjects and 23 patients with different cardiac pathologies underwent cardiovascular 3 T MRI examinations including 3D-QALAS, MOLLI and T2-GraSE acquisitions. Precision was investigated in the healthy subjects between independent scans, between dependent scans and as standard deviation of consecutive scans. Clinical feasibility of 3D-QALAS was investigated for native and contrast enhanced myocardium in patients. Data were analyzed using mean value and 95% confidence interval, Pearson correlation, Paired t-tests, intraclass correlation and Bland-Altman analysis.ResultsAverage myocardial relaxation time values and SD from eight repeated acquisitions within the group of healthy subjects were 1178 ± 18.5 ms (1.6%) for T1 with 3D-QALAS, 52.7 ± 1.2 ms (2.3%) for T2 with 3D-QALAS, 1145 ± 10.0 ms (0.9%) for T1 with MOLLI and 49.2 ± 0.8 ms (1.6%) for T2 with GraSE.Myocardial T1 and T2 relaxation times obtained with 3D-QALAS correlated very well with reference methods; MOLLI for T1 (r = 0.994) and T2-GraSE for T2 (r = 0.818) in the 23 patients. Average native/post-contrast myocardial T1 values from the patients were 1166.2 ms/411.8 ms for 3D-QALAS and 1174.4 ms/438.9 ms for MOLLI. Average native myocardial T2 values from the patients were 53.2 ms for 3D-QALAS and 54.4 ms for T2-GraSE.ConclusionsRepeated independent and dependent scans together with the intra-scan repeatability, demonstrated all a very good precision for the 3D-QALAS method in healthy volunteers. This study shows that 3D T1 and T2 mapping in the left ventricle is feasible in one breath hold for patients with different cardiac pathologies using 3D-QALAS.  相似文献   

19.
BackgroundAlthough analysis of cardiac magnetic resonance (CMR) images provides accurate and reproducible measurements of left ventricular (LV) volumes, these measurements are usually not performed throughout the cardiac cycle because of lack of tools that would allow such analysis within a reasonable timeframe. A fully-automated machine-learning (ML) algorithm was recently developed to automatically generate LV volume-time curves. Our aim was to validate ejection and filling parameters calculated from these curves using conventional analysis as a reference.MethodsWe studied 21 patients undergoing clinical CMR examinations. LV volume-time curves were obtained using the ML-based algorithm (Neosoft), and independently using slice-by-slice, frame-by-frame manual tracing of the endocardial boundaries. Ejection and filling parameters derived from these curves were compared between the two techniques. For each parameter, Bland-Altman bias and limits of agreement (LOA) were expressed in percent of the mean measured value.ResultsTime-volume curves were generated using the automated ML analysis within 2.5 ± 0.5 min, considerably faster than the manual analysis (43 ± 14 min per patient, including ~10 slices with 25–32 frames per slice). Time-volume curves were similar between the two techniques in magnitude and shape. Size and function parameters extracted from these curves showed no significant inter-technique differences, reflected by high correlations, small biases (<10%) and mostly reasonably narrow LOA.ConclusionML software for dynamic LV volume measurement allows fast and accurate, fully automated analysis of ejection and filling parameters, compared to manual tracing based analysis. The ability to quickly evaluate time-volume curves is important for a more comprehensive evaluation of the patient's cardiac function.  相似文献   

20.
PurposeWe aimed to investigate whether quantitative diffusivity variables of healthy ovaries vary during the menstrual cycle and to evaluate alterations in women using oral contraceptives (OC).MethodsThis prospective study (S-339/2016) included 30 healthy female volunteers, with (n = 15) and without (n = 15) intake of OC between 07/2017 and 09/2019. Participants underwent 3T diffusion-weighted MRI (b-values 0–2000 s/mm2) three times during a menstrual cycle (T1 = day 1–5; T2 = day 7–12; T3 = day 19–24). Both ovaries were manually three-dimensionally segmented on b = 1500 s/mm2; apparent diffusion coefficient (ADC) calculation and kurtosis fitting (Dapp, Kapp) were performed. Differences in ADC, Dapp and Kapp between time points and groups were compared using repeated measures ANOVA and t-test after Shapiro-Wilk and Brown-Forsythe test for normality and equal variance.ResultsIn women with a natural menstrual cycle, ADC and kurtosis variables showed significant changes in ovaries with the dominant follicle between T1 vs T2 and T1 vs T3, whilst no differences were observed between T2 vs T3: ADC ± SD for T1 1.524 ± 0.160, T2 1.737 ± 0.160, and T3 1.747 ± 0.241 μm2/ms (p = 0.01 T2 vs T1; p = 1.0 T2 vs T3, p = 0.003 T3 vs T1); Dapp ± SD for T1 2.018 ± 0.140, T2 2.272 ± 0.189, and T3 2.230 ± 0.256 μm2/ms (p = 0.003 T2 vs T1, p = 1.0 T2 vs T3, p = 0.02 T3 vs T1); Kapp ± SD for T1 0.614 ± 0.0339, T2 0.546 ± 0.0637, and T3 0.529 ± 0.0567 (p < 0.001 T2 vs T1, p = 0.86 T2 vs T3, p < 0.001 T3 vs T1). No significant differences were found in the contralateral ovaries or in females taking OC.ConclusionPhysiological cycle-dependent changes in quantitative diffusivity variables of ovaries should be considered especially when interpreting radiomics analyses in reproductive women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号