首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction between [(η5-C5H5)MoH(CO)3] and disulphides gives dimeric or trimeric complexes depending upon the conditions. The syntheses of the novel trinuclear molybdenum carbonyl complex [{Mo(η5-C5H5)(SR)(μ-CO)(CO)}3] (R = Me), and dinuclear compounds [Mo25-C5H5)(μ-SR)3(CO)4] (R = Me) and [Mo25-C5H5)2(SR)2(CO)2(μ-SR)(μ-Br)] (R = Me or Ph) are reported.  相似文献   

2.
The meso-pyridyl substituted dipyrromethane ligands 5-(4-pyridyl)dipyrromethane (4-dpmane) and 5-(3-pyridyl)dipyrromethane (3-dpmane) have been employed in the synthesis of a series of complexes with the general formulations [(η6-arene)RuCl2(L)] (η6-arene = C6H6, C10H14) and [(η5-C5Me5)MCl2(L)] (M = Rh, Ir). The reaction products have been characterized by microanalyses and spectral studies and molecular structures of the complexes [(η6-C10H14)RuCl2(4-dpmane)] and [(η5-C5Me5)IrCl2(3-dpmane)] have been determined crystallographically. For comparative studies, geometrical optimization have been performed on the complex [(η5-C5Me5)IrCl2(4-dpmane)] using exchange correlation functional B3LYP. Optimized bond length and angles are in good agreement with the structural data of the complex [(η5-C5Me5)IrCl2(3-dpmane)]. The complexes [(η6-C10H14)RuCl2(3-dpmane)], [(η5-C5Me5)RhCl2(3-dpmane)] and [(η5-C5Me5)IrCl2(3-dpmane)] have been employed as a transfer hydrogenation catalyst in the reduction of aldehydes. It was observed that the rhodium and iridium complexes mentioned above are more effective in this regard in comparison to the ruthenium complex.  相似文献   

3.
Heteroleptic rhodium(I) complexes with the general formulations [(η4-C8H12)Rh(L)] [η4-C8H12 = 1,5-cyclooctadiene; L = 5-(4-cyanophenyl)dipyrromethene, cydpm; 5-(4-nitrophenyl)dipyrromethene, ndpm; and 5-(4-benzyloxyphenyl)dipyrromethene, bdpm; 5-(4-pyridyl)dipyrromethene, 4-pyrdpm; 5-(3-pyridyl)dipyrromethene, 3-pyrdpm] have been synthesized. The complex [(η4-C8H12)Rh(4-pyrdpm)] have been used as a synthon in the construction of homo-bimetallic complex [(η4-C8H12)Rh(μ-4-pyrdpm)Rh(η5-C5Me5)Cl2] and hetero-bimetallic complexes [(η4-C8H12)Rh(μ-4-pyrdpm)Ir(η5-C5Me5)Cl2], [(η4-C8H12)Rh(μ-4-pyrdpm)Ru(η6-C10H14)Cl2] and [(η4-C8H12)Rh(μ-4-pyrdpm)Ru(η6-C6H6)Cl2]. Resulting complexes have been characterized by elemental analyses and spectral studies. Molecular structures of the representative mononuclear complexes [(η4-C8H12)Rh(ndpm)] and [(η4-C8H12)Rh(4-pyrdpm)] have been authenticated crystallographically.  相似文献   

4.
The synthesis and characterization of heteroleptic complexes with the formulations [(η6-arene)RuCl(fcdpm)] (η6-arene = C6H6, C10H14) and [(η5-C5Me5)MCl(fcdpm)] (M = Rh, Ir; fcdpm = 5-ferrocenyldipyrromethene) have been reported. All the complexes have been characterized by elemental analyses, IR, 1H NMR and electronic spectral studies. Structures of [(η6-C6H6)RuCl(fcdpm)] and [(η6-C10H14)RuCl(fcdpm)] have been determined crystallographically. Chelating monoanionic linkage of fcdpm to the respective metal centres has been supported by spectral and structural studies. Further, reactivity of the representative complex [(η6-C10H14)RuCl(fcdpm)] with ammonium thiocyanate (NH4SCN) and triphenylphosphine (PPh3) have been examined.  相似文献   

5.
The reactions of [(η6-C6H6)RuCl2]2 and [(η6-p-cymene)RuCl2]2 with hydrogen in the presence of the water-soluble phosphines tppts (meta-trisulfonated triphenylphosphine) and pta (1,3,5-triaza-7-phosphaadamantane) afforded as the main species [(η6-C6H6)RuH(tppts)2]+, [(η6-C6H6)RuH(pta)2]+, [(η6-p-cymene)RuH(tppts)2]+ and [(η6-p-cymene)RuH(pta)2]+. This latter complex was also formed in the reaction of [(η6-p-cymene)RuCl2(pta)] and hydrogen with a redistribution of pta. In addition, prolonged hydrogenation at elevated temperatures and in the presence of excess of pta led to the formation of the arene-free [RuH(pta)4Cl], [RuH(pta)4(H2O)]+, [RuH2(pta)4] and [RuH(pta)5]+ complexes. Ru-hydrides, such as [(η6-arene)RuH(L)2]+, catalyzed the hydrogenation of bicarbonate to formate in aqueous solutions at p(H2)=100 bar, T=50-70 °C.  相似文献   

6.
By reaction of [Ir(COD)Cl]2 (COD = 1,5-cyclooctadiene) with i-C3H7MgBr in the presence of cyclic dienes, complexes of the type [IrH(COD)L] (L = 1,3-cyclohexadiene, 2-methyl-],3-cyclohexadiene, 5-ethyl-1,3-cyclohexadiene, 1,3-cycloheptadiene) are obtained. The system IrCl3/i-C3H7MgBr/1,3-C6H8 yields [IrH(1,3-C6H8)2]. According to NMR spectroscopic investigations the pure hydrido forms exist in solution only at low temperatures while at room temperature dynamic H-addition—elimination equilibria of the type [IrH(η4-diene)(COD)] ? [Ir(η3-enyl)(COD)] and [IrH(η4-1,3-C6H8)2] ? [Ir(η3-C6H9)-(η4-1,3-C6H8)], respectively, are observed; the hydrogen at the iridium atom is thereby transferred to the endo positions of the diene ligands.  相似文献   

7.
Contributions to the Chemistry of Phosphorus. 227. HP4º as a Complex Ligand: Formation and Properties of [(η5-C5H5)2ZrCl(P4H)], [(η5-C5Me5)2ZrCl(P4H)], and [(η5-C5H5)3Zr(P4H)] The novel complexes [(η5-C5H5)2ZrCl(P4H)] ( 1 ), [(η5-C5Me5)2ZrCl(P4H)] ( 2 ), and [(η5-C5H5)3Zr(P4H)] ( 3 ) have been obtained by reaction of a solution of (Na/K)HP4 with the zirconocen derivatives [(η5-C5H5)2ZrCl2], [(η5-C5Me5)2ZrCl2], and [(η5-C5H5)31-C5 H5)Zr] under suitable conditions. The structure of the compounds 1 – 3 , which are only stable in solution, has been elucidated by means of 31P-NMR spectroscopy. It is highly probable that the exo,endo isomer exists in each case. In addition, further isomers of lower relative abundancies have been observed, in which the ligands presumably exhibit a different spatial orientation relatively to each other.  相似文献   

8.
The preparation of the compounds {(η-C5H5)MoX}2{μ-(η5-C5H45-C5H4)} (X = Me, PhCH2, Me3SiCH2, Br) and {(η-C5H5)MoY2}2{μ-(η5-C5H45-C5H4)}, (Y = H, I, SMe, S-n-Bu) is described. Photolysis of {(η-C5H5)MoH}2 {μ-(η15 -C5H4)}2 and {(η-C5H5)MoH}2{(η5-C5H45-C5H4)} in benzene leads to a compound of stoichiometry C20H18Mo2.  相似文献   

9.
Arene ruthenium complexes [(η6-arene)Ru(sacc)2(OH2)] (arene = para-cymeme, benzene) containing an aqua and two saccharinato ligands have been synthesized from [(η6-arene)RuCl2]2 and sodium saccharinate in a water-ethanol mixture (1:1). The aqua complex [(η6-MeC6H4Pri)Ru(sacc)2(OH2)] reacts with acetonitrile to give the acetonitrile complex [(η6-MeC6H4Pri)Ru(sacc)2(NCMe)]. The corresponding benzene derivative [(η6-C6H6)Ru(sacc)2(NCMe)] was obtained from [(η6-C6H6)RuCl2]2 and saccNa in an acetonitrile-methanol mixture (1:1). All new complexes show a piano-stool geometry with two mono-hapto nitrogen-bonded saccharinato ligands in addition to a H2O or MeCN ligand. All complexes of the type [(η6-arene)Ru(sacc)2(OH2)] and [(η6-arene)Ru(sacc)2(NCMe)] were found to catalyze the oxidation of secondary alcohols with tert-butyl hydroperoxide (ButOOH) to give the corresponding ketones in aqueous solution.  相似文献   

10.
《Polyhedron》1999,18(20):2679-2685
The trinuclear oxo-capped cluster cation [(η6-C6H6)(η6-C6Me6)2Ru32-H)33-O)]+ (2) was synthesised by reacting [(η6-C6Me6)Ru(H2O)3]2+ with [(η6-C6Me6)2Ru22-H)3]+ in aqueous solution. The single-crystal X-ray structure analysis of the tetrafluoroborate salt shows the cation to contain a H2O molecule hydrogen-bonded to the μ3-oxo ligand. Acidification experiments show two protonation steps occuring at this H2O molecule and the oxo cap of the triruthenium cluster. The cluster cation 2 catalyses the hydrogenation of aromatic compounds in aqueous solution under biphasic conditions.  相似文献   

11.
The mononuclear cationic complexes [(η6-C6H6)RuCl(L)]+ (1), [(η6-p-iPrC6H4Me)RuCl(L)]+ (2), [(η5-C5H5)Ru(PPh3)(L)]+ (3), [(η5-C5Me5)Ru(PPh3)(L)]+ (4), [(η5-C5Me5)RhCl(L)]+ (5), [(η5-C5Me5)IrCl(L)]+ (6) as well as the dinuclear dicationic complexes [{(η6-C6H6)RuCl}2(L)]2+ (7), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (8), [{(η5-C5H5)Ru(PPh3)}2(L)]2+ (9), [{(η5-C5Me5)Ru(PPh3)}2(L)]2+ (10), [{(η5-C5Me5)RhCl}2(L)]2+ (11) and [{(η5-C5Me5)IrCl}2(L)]2+ (12) have been synthesized from 4,4′-bis(2-pyridyl-4-thiazole) (L) and the corresponding complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2, [(η5-C5H5)Ru(PPh3)2Cl)], [(η5-C5Me5)Ru(PPh3)2Cl], [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2, respectively. All complexes were isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV-vis spectroscopy. The X-ray crystal structure analyses of [3]PF6, [5]PF6, [8](PF6)2 and [12](PF6)2 reveal a typical piano-stool geometry around the metal centers with a five-membered metallo-cycle in which 4,4′-bis(2-pyridyl-4-thiazole) acts as a N,N′-chelating ligand.  相似文献   

12.
In situ lithiation of HN(o-C6H4PPh2)2 (H[ 1a ]) or HN(o-C6H4PiPr2)2 (H[ 1b ]) with nBuLi in THF at −35°C followed by addition of [Ir(μ-Cl)(COD)]2 (COD = 1,5-cyclooctadiene) in toluene at −35°C generates 5-coordinate [ 1a ]Ir(η4-COD) ( 2a ) or 4-coordinate [ 1b ]Ir(η2-COD) ( 2b ), respectively. Oxidative addition of N-H in H[ 1b ] to [Ir(μ-Cl)(COD)]2 affords square pyramidal [ 1b ]Ir(H)(Cl) ( 3b ). Metathetical reaction of 3b with LiBHEt3 in the presence of 1 atm of H2 in toluene produces [ 1b ]Ir(H)2 ( 4b ). Both 2a and 4b are active for catalytic hydrogenation of olefins and alkynes under extremely mild conditions.  相似文献   

13.
Complex Catalysis. XXXII. Synthesis and Characterization of η3-Allyl-, η3-Crotyl-, and η12-Cyclooct-4(Z)-en-1-yl-nickel(II)-bis(brenzcatechinato)borate and their Suitability as Catalysts for the Stereospecific Butadiene Polymerization By reaction of [(η3-C3H5)2Ni], [(η3-C4H7)2Ni], and [Ni(cycloocta-1,5-diene)2] with one equivalent bis(brenzcatechinato)boric acid HB(O2C6H4)2 in ether the complexes given in the title could be synthesized in good yields. The allyl complex [η3-C3H5NiB(O2C6H4)2] reacts with cycloocta-1,5-diene (COD) to give a cationic complex [η3-C3H5Ni(COD)]B(O2C6H4)2 and catalyses the 1,4-trans-polymerization of butadiene with an activity of ca. 150 ml C4H6/mol Ni · h and a selectivity of 78% under standard conditions at room temperature.  相似文献   

14.
Deprotonation of the readily available organometallic aldehyde derivative [(η4‐C7H7CHO)Fe(CO)3] ( 2 ) with NaN(SiMe3)2 in benzene solution at ambient temperature afforded the anionic formylcycloheptatrienyl complex Na[(η3‐C7H6CHO)Fe(CO)3] ( 3 ). The anion is fluxional in solution and displays a unique ambident reactivity towards electrophiles (MeI, Me3SiCl). New substituted [(η4‐RC7H6CHO)Fe(CO)3] and [(η4‐heptafulvene)Fe(CO)3] complexes have been identified as the products. Treatment of 3 with 0.5 equivalents of dimeric [(COD)RhCl]2 (COD = 1,5‐cyclooctadiene) afforded the functionalized Fe‐Rh cycloheptatrienyl complex [(μ‐C7H6CHO)(CO)3FeRh(COD)] ( 7 ) in up to 86 % yield. Carbonylation of 7 under an atmosphere of CO led to facile conversion to the heterobimetallic pentacarbonyl derivative [(μ‐C7H6CHO)(CO)3FeRh(CO)2] ( 8 ), which is also accessible in lower yield from the direct reaction of 3 with [Rh(CO)2Cl]2.  相似文献   

15.
Preliminary reactions of the metal stabilized carbocationic species [(η-C5H5)Ni(μ-η2(Ni),η3(Mo)-HC2CMe2)Mo(CO)2(η-C5H4Me)]+ BF4 (Ni-Mo) with nucleophiles are reported. The Ni-Mo cationic propargylic complex undergoes nucleophilic attack by sodium methoxide to regenerate the neutral μ-alkyne complex [(η-C5H5)Ni{μ-η22-HC2CMe2(OMe)}Mo(CO)2(η-C5H4Me)] (Ni-Mo), from which the stabilized carbocation was originally derived by protonation. The new complexes [(η-C5H5)Ni{μ-η22-HC2CMe2(C5H5)}Mo(CO)2(η-C5H4Me)] (Ni-Mo), which exist as an inseparable mixture of 1(c)-1,3- and 2(c)-1,3-cyclopentadienyl isomers, were also obtained. When the Ni-Mo cations were treated with potassium t-butoxide, the alkyne isomers with pendant 1(c)-1,3- and 2(c)-1,3-cyclopentadienyl groups are also formed. The μ-hydroxyalkyne complex [(η-C5H5)Ni{μ-η22-HC2CMe2(OH)}-Mo(CO)(η-C5H4Me)] (Ni-Mo) was also isolated concurrently, and presumably arises from nucleophilic attack of fortuitously present hydroxide ions in the BuO reagent on the Ni-Mo cation. When NaBH4 was added to the Ni-Mo propargylic, nucleophilic attack by hydride resulted and the μ-iPrC2H heterobimetallic complex [(η-C5H5)Ni{μ-η22-HC2Pri}Mo(CO)2(η-C5H4Me)] (Ni-Mo) was recovered in good yield. Small quantities of other side-products were isolated and characterized spectroscopically. Some tantalizing differences in reactivity were observed when the corresponding Ni-W stabilized carbocation was reacted with methoxide ions. When the not fully characterized solid formed by protonating [(η-C5H5)Ni(μ-η22-{HC2CMe2)(OMe)}W(CO)2(η-C5H4Me)] (Ni-W) was treated with methoxide ions, regioisomers (1(c)-1,3- and 2(c)-1,3-cyclopentadienyl species) of composition [(η-C5H5)Ni{μ-η22-HC2CMe2(C5H5)}W(CO)2(η-C5H4Me)] (Ni-W) were formed. Direct reaction of the pure cation [(η-C5H5Niμ-η23-HC2CMe2)W(CO)2(η-C5H4Me)]+ (Ni-W) with methoxide also generated the same 1(c)-1,3- and 2(c)-1,3-cyclopentadiene-substituted alkyne complexes. Unlike the case with the Ni-Mo complexes, the initial μ-HC2CMe2(OMe) species was not regenerated.  相似文献   

16.
The tetraethyl- and tetramethyl-cyclobutadiene complexes [(η4-C4R4)Co(η5-C5H4CHO)] R = Et, 5, R = Me, 7, and [(η4-C4R4)Co(η5-C5H4CO2Me)] R = Et, 6, R = Me, 8, are conveniently prepared by photolysis of the corresponding isocobaltocenium cations [(η4-C4R4)Co(η6-C6H5Me)]+ in acetonitrile, and subsequent treatment with Na[C5H4CHO] or Na[C5H4CO2Me]. The aldehydes 5 and 7 undergo Wittig and Knoevenagel reactions with [FcCH2PPh3]I and CH2(CN)2, to form [(η4-C4R4)Co(η5-C5H4CH=CHFc)] and [(η4-C4R4)Co(η5-C5H4CH=C(CN)2], 11 and 15, respectively. The Horner-Wittig reaction of [(η4-C4R4)Co(η5-C5H4CH2P(O)(OEt)2] with [(η4-C4Ph4)Co(η5-C5H4CHO)] yields [(η4-C4R4)Co(η55-C5H4CHCH-C5H4)Co(η4-C4Ph4)], 12 and 13. [(η4-C4Me4)Co(η5-C5H4CHO)] also reacts with t-BuLi and FcLi to furnish the corresponding secondary alcohols, 16 and 17, respectively. Surprisingly, the attempted direct synthesis of 5 by reaction of Na[C5H5] and ethyl formate with [(η4-C4Et4)Co(CO)2I], 1, instead yielded [(η5-C5H5)Co(η4-3,4,5,6-tetraethyl-α-pyrone)], 18, and a mechanistic proposal is advanced. The X-ray crystal structures of 1, 7, 8, 11(Z), 15 and 18, and also the isocobaltocenium salts [(η4-C4Et4)Co(η6-C6H5Me)][PF6], 2, and [(η4-C4Et4)Co(η6-1,3,5-C6H3Me3)][PF6], 4, are reported.  相似文献   

17.
Three novel stable complexes of manganese were prepared by interaction of [(η5-C5H5)Mn(CO)2 (THF)] with phenylacetylene. X-ray structure analysis of two of the complexes established the presence of a phenylvinylidene ligand. In [(η5-C5H5Mn(CO)2(CCHPh)] this ligand forms an unusual double MnC bond and in [(η5-C5H5)Mn2(CO)4(CCHPh)] it acts as a bridge strengthening the MnMn bond.  相似文献   

18.
Hydride or methyl abstraction from (η5-C5H5)(OC)3MH (M = Mo, W), (OC)5ReCH3 with benzyliumhexafluoroantimonate gives the complexes [(η5-C5H5)(OC)3M(OCPhH)]+SbF6 and [(OC)5Re(OCPhMe)]+SbF6, respectively. The acetaldehyde and benzaldehyde complexes [(η5-C5H5)(OC)3M(OCRH)]+BF4 (M = Mo, W; R = Me, Ph), [(OC)5Re(OCMeH)]+Bf4 can also be formed by treating (η5-C5H5)(OC)3MFBF3 or (OC)5ReFBF3 with aldehyde.  相似文献   

19.
The reaction of [(η5-C9H7)Ru(η2-dppe)Cl] (1) with monodentate nitriles, (L) in the presence of NH4PF6 afforded the complexes [(η5-C9H7)Ru(η2-dppe)(L)]PF6, with L?=?CH3CN (2a), CH3CH=CHCN (2b), NCC6H4CN (2c), C6H5CH2CN (2d), respectively. However, reaction of 1 with NH4PF6 in methanol yielded an amine complex of the type [(η5-C9H7) Ru(η2-dppe)(NH3)]PF6 (3a). The complexes were fully characterized by spectroscopy and analytical data. The molecular structures of the complexes [(η5-C9H7)Ru(η2-dppe) (CH3CN)]PF6 (2a) and [(η5-C9H7)Ru(η2-dppe)(NH3)]PF6 (3a) have been determined by single crystal X-ray analyses.  相似文献   

20.
Visible light irradiation of cation [(η5-C6H7)Fe(η-C6H6)]+ (1+) in acetonitrile results in substitution of the benzene ligand giving the labile acetonitrile derivative [(η5-C6H7)Fe(MeCN)3]+ (2a+). The stable isonitrile and phosphite complexes [(η5-C6H7)FeL3]+ [L = tBuNC (2b+), P(OMe)3 (2c+), P(OEt)3 (2d+)] were obtained by reaction of 1 with L in MeCN. The structures of 2cPF6, [CpFe(η-C6H6)]PF6 (3PF6), and Cp1Fe(η-C6H6)]PF6 (4PF6) were determined by X-ray diffraction.The redox activity of the cyclohexadienyl complexes 1+, 2b+?2d+ has been investigated by electrochemical techniques and compared with that of the related cyclopentadienyl complexes 3+ and 4+. DFT calculations of the redox potentials and the respective geometrical changes were performed.Variable temperature Mössbauer (ME) spectroscopy has elucidated the relationship between structure and formal oxidation state of the iron atom in these complexes. In the case of 3+ an unexpected pair of crystallographic changes has been observed and interpreted in terms of both a second and first order phase transition. The mean-square-amplitude-of-vibration of the metal atom has been compared between the ME and X-ray data. ME measurements in a magnetic field have shown that in 4+ the quadrupole splitting is positive as it is in ferrocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号