首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose: To study whether application of magnetization transfer contrast (MTC) improves visibility and detection of multiple sclerosis (MS) lesions on long repetition time (TR) conventional spin-echo (CSE) or fast spin-echo (FSE) magnetic resonance (MR) imaging.Material and methods: In 20 patients and 5 controls, MR images were obtained using long repetition time CSE and FSE sequences with and without MTC. Signal-to-noise ratios of normal appearing white matter (NAWM) and selected lesions, and contrast-to-noise ratios between lesions and NAWM, were calculated. Lesions were counted and total lesion volume was measured in a blinded fashion for each sequence.Results: In controls, MT effect in white matter (16.3% vs. 12.2%) was higher for CSE than for FSE (p < 0.01). Application of MTC to either CSE or FSE resulted in a significantly lower decrease in signal intensity of NAWM in patients compared to white matter in controls (p < 0.01). Furthermore, in patients signal intensity of lesions was less decreased than signal intensity of NAWM (p < 0.01). Compared to sequences without MTC, contrast-to-noise ratios were significantly higher on both CSE (10.9%) and FSE (6.3%) when MTC was applied (p < 0.01). Despite better visibility, the number of lesions detected on either sequences did not increase when MTC was applied. For CSE with MTC, we found an almost equal number of lesions and for FSE with MTC, we found even less lesions (p < 0.01). Total lesion volume did not change significantly when MTC was applied.Conclusion: Although contrast between lesions and NAWM improved when magnetization transfer contrast was applied, this did not increase detection of MS lesions on either CSE or FSE MR imaging.  相似文献   

2.
By using the perturbation expansion method and self-consistent iterative method, we evaluate the effect of the conduction band nonprabolicity on the wave vector (kt) dependent Rashba coefficient (α) and nonlinear Rashba spin splitting (ΔE) in the Al0.5Ga0.5N/GaN quantum well (QW). The effective mass (energy) under the first order approximation mt1 (Ek1) is in proximity to the iterative result mtp (Ekp) and mt1>mtp, Ek1<Ekp, showing the higher order contributions to mt (Ek) are small. The sign of the nonparabolic correction to Ek is just opposite to that of the correction to mt. The increase of α and ΔE due to the conduction band nonparabolicity reaches about 3% at kt=1 nm−1. Around the left heterointerface, the probability density is high and Ek0>Ekp>Ek1, so α0<αp<α1, ΔE0EpE1. With increasing kt, α decreases, and ΔE increases slowly. For small kt, α0E0), α1E1) and αpEp) are nearly the same. While for large kt, the difference between α0 and α1 (αp) increases rapidly, but the difference between ΔE0 and ΔE1Ep) increases slowly.  相似文献   

3.
IntroductionMultiple sclerosis (MS) is a central nervous system disorder that may eventually affect its function. The clinical standard for MS severity is based on a clinical scale, which lacks lesion specific information. Magnetic resonance imaging of MS faces the challenge of myelin specificity, and in this work a new method inhomogeneous magnetization transfer (ihMT) is investigated as new biomarker of demyelination in MS.MethodsLocal ethics committee approved this study and written informed consents were obtained. Between Oct 2017 to May 2018, eighteen patients with relapsing-remitting MS (RRMS) (6 males, 12 females, mean age 31.2) and sixteen healthy volunteers (6 males, 10 females, mean age 30.4 years) were enrolled in this prospective study. All subjects underwent MRI exams including MT and ihMT imaging as well as the Expanded Disability Status Scale (EDSS) assessments. Independent sample t-test were used to compare the difference of ihMT parameters between healthy white matter (HWM) and normal appearing white matter (NAWM) and between HWM and MS lesions, respectively. Spearman correlation were used to analyze the correlation between ihMT parameters of MS lesions and EDSS score.ResultsThe ihMTR and qihMT demonstrate significant differences between WHM and NAWM groups, while no significant differences are observed for MTR and qMT. All parameters show significant differences between HWM and MS groups (p < 0.05). There was moderate negative correlation between MTR, qMT and EDSS score (−0.440 and −0.572), while there was a strong negative correlation between ihMTR and qihMT and EDSS score (−0.704 and −0.739).ConclusionBased on whole brain analysis at 3.0 T, ihMT showed better correlation with EDSS compared to magnetization transfer imaging, and may be a potentially valuable biomarker for demyelination in MS.  相似文献   

4.
5.

Introduction

Diffusion tensor imaging (DTI) reveals white matter pathology in patients with multiple sclerosis (MS). A recent non-Gaussian diffusion imaging technique, q-space imaging (QSI), may provide several advantages over conventional MRI techniques in regard to in vivo evaluation of the disease process in patients with MS. The purpose of this study is to investigate the use of root mean square displacement (RMSD) derived from QSI data to characterize plaques, periplaque white matter (PWM), and normal-appearing white matter (NAWM) in patients with MS.

Methods

We generated apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps by using conventional DTI data from 21 MS patients; we generated RMSD maps by using QSI data from these patients. We used the Steel–Dwass test to compare the diffusion metrics of regions of interest in plaques, PWM, and NAWM.

Results

ADC differed (P < 0.05) between plaques and PWM and between plaques and NAWM. FA differed (P < 0.05) between plaques and NAWM. RMSD differed (P < 0.05) between plaques and PWM, plaques and NAWM, and PWM and NAWM.

Conclusion

RMSD values from QSI may reflect microstructural changes and white-matter damage in patients with MS with higher sensitivity than do conventional ADC and FA values.  相似文献   

6.
PurposeTo evaluate the performance of novel spiral MRSI and tissue segmentation pipeline of the brain, to investigate neurometabolic changes in normal-appearing white matter (NAWM) and white matter lesions (WML) of stable relapsing remitting multiple sclerosis (RRMS) compared to healthy controls (HCs).MethodsSpiral 3D MRSI using LASER-GOIA-W [16,4] was undertaken on 16 RRMS patients and 9 HCs, to acquire MRSI data from a large volume of interest (VOI) 320 cm3 and analyzed using LCModel. MRSI data and voxel tissue segmentation were compared between the two cohorts using t-tests. Support vector machine (SVM) was used to classify tissue types and assessed by accuracy, sensitivity and specificity.ResultsCompared to HCs, RRMS demonstrated a statistically significant reduction in all mean brain tissues and increase in CSF volume. Within VOI, WM decreased (−10%) and CSF increased (41%) in RRMS compared to HCs (p < 0.001). MRSI revealed that total creatine (tCr) ratios of N-acetylaspartate and glutamate+glutamine in WML were significantly lower than NAWM-MS (−9%, −8%) and HCs (−14%, −10%), respectively. Myo-inositol/tCr in WML was significantly higher than NAWM-MS (14%) and HCs (10%). SVM of MRSI yielded accuracy, sensitivity and specificity of 86%, 95%, and 70%, respectively for HCs vs WML, which were higher than HC vs NAWM and WML vs NAWM models.ConclusionThis study demonstrates the benefit of MRSI in evaluating MS neurometabolic changes in NAWM. SVM of MRSI data in the MS brain may be suited for clinical monitoring and progression of MS patients. Longitudinal MRSI studies are warranted.  相似文献   

7.
The relation between Coulomb displacement energies,ΔE c , andΔr=r n -r p , the difference between the rms radii of neutrons and protons in nuclei, is investigated within the energy density formalism (EDF). The variational equation, obtained by minimizing the Coulomb plus symmetry energies, is solved assuming the symmetry interaction is a simple functional of the local nuclear matter density. Varying parameters of the model, rather unique relation betweenΔE c andΔr is obtained (within ±50 keV).ΔE c isindependent ofr ex, the rms radius of the excess neutrons distribution. Using the experimental values ofr p and adjusting the model to reproduce the recent data onΔr (Δr∽~0.05 fm for48Ca and208Pb), which are significantly smaller than those obtained from current Hartree-Fock calculations, the calculatedΔE c agree with the experimental results. Using the value ofΔr~0.05 fm and the experimental values ofr ex, a small compression (<0.02 fm) of the proton core in the analogue state relative to its parent state emerges, thus contributing an additional electrostatic term to the Coulomb displacement energy. The size of this relative core-compression effect depends on the values assumed forΔr andr ex, it increases with the decreasing ofΔr and the increasing ofr ex. IfΔr~0.05 fm the effect is large enough to remove the long standing Coulomb energy anomaly. The main result of the present work is the correlation betweenΔE c andΔr, suggesting that the difficulties of current Hartree-Fock calculations in reproducing isotope shifts ofr p , the small value ofr n ?r p and the values ofΔE c may all be different manifestations of some missing residualp n effective interaction.  相似文献   

8.
Sessile droplets of an ionic liquid with contact angles close to 90° were subjected to an electric field E = V/w inside a capacitor with plate separation w and potential difference V. For small field induced deformations of the droplet shape the change in maximum droplet height, Δh = h(E) – h(0), was found to be virtually independent of the plate separation provided that w > 3h(0). In this regime a scaling law obtains Δh α E2r2, where r is the constant droplet radius, in agreement with the asymptotic predictions of Basaran and Scriven (J. Coll. Int. Sci. 140, 10, 1990).  相似文献   

9.
IntroductionOscillating gradient spin-echo (OGSE) sequences enable acquisitions with shorter diffusion times. There is growing interest in the effect of diffusion time on apparent diffusion coefficient (ADC) values in patients with cancer. However, little evidence exists regarding its usefulness for differentiating between high-grade and low-grade brain tumors. The purpose of this study is to investigate the utility of changes in the ADC value between short and long diffusion times in distinguishing low-grade and high-grade brain tumors.Material and methodsEleven patients with high-grade brain tumors and ten patients with low-grade brain tumors were scanned using a 3 T magnetic resonance imaging with diffusion-weighted imaging (DWI) using OGSE and PGSE (effective diffusion time [Δeff]: 6.5 ms and 35.2 ms) and b-values of 0 and 1000 s/mm2. Using a region of interest (ROI) analysis of the brain tumors, we measured the ADC for two Δeff (ADCΔeff) values and computed the subtraction ADC (ΔADC = ADC6.5 ms − ADC35.2 ms) and the relative ADC (ΔADC = (ADC6.5 ms − ADC35.2 ms) / ADC35.2 ms × 100). The maximum values for the subtraction ADC (ΔADCmax) and the relative ADC (rADCmax) on the ROI were compared between low-grade and high-grade tumors using the Wilcoxon rank-sum test. A P-value <.05 was considered significant. The ROIs were also placed in the normal white matter of patients with high- and low-grade brain tumors, and ΔADCmax values were determined.ResultsHigh-grade tumors had significantly higher ΔADCmax and rADCmax than low-grade tumors. The ΔADCmax values of the normal white matter were lower than the ΔADCmax of high- and low-grade brain tumors.ConclusionThe dependence of ADC values on diffusion time between 6.5 ms and 35.2 ms was stronger in high-grade tumors than in low-grade tumors, suggesting differences in internal tissue structure. This finding highlights the importance of reporting diffusion times in ADC evaluations and might contribute to the grading of brain tumors using DWI.  相似文献   

10.
《Physics letters. [Part B]》1988,207(4):504-510
The experimental data on the neutral current couplings are used to derive lower bounds on the mass of ZE, the extra neutral gauge boson appearing in the minimal ‘beyond the standard model’ scenario favoured in superstring compactifications. This is based on the gauge group SU(3)c×SU(2)L×U(1)Y×U(1)E. Taking sin2θw=0.229, mW=80.76 GeV and mZ=91.59 GeV it is found that the mixing angle θ between Z and ZE must satisfy −0.136<sin θ<−0.007 corresponding to mZE>152 GeV or, assuming E6 unification mZE>155 GeV.  相似文献   

11.
The effect of chlorides of magnesium, calcium, strontium and barium on the temperature of the sound velocity maximum (TSVM) of water, Tw, has been studied by determining the ultrasonic velocity using a single crystal variable path interferometer working at 3 MHz. The accuracy in ultrasonic velocity measurement is ± 0.05 m s 1. The ultrasonic velocity measurements were carried out at ≃ 2 °C intervals over a range of 5 °C to either side of TSVM of the solutions. The accuracy in fixing TSVM is ± 0.2 °C. The shifts in TSVM of water due to the addition of MgCl2 and CaCl2, (ΔTobs), are found to be positive at low concentrations becoming maxima around the weight fraction w  2.3 × 10 2 for MgCl2 and w  3.8 × 10 2 for CaCl2 and becoming negative around w  5.6 × 10 2 for MgCl2 and w  3.8 × 10 2 for CaCl2. (ΔTobs) for MgCl2 > CaCl2 > SrCl2 > BaCl2 indicating that the strength of the structural interactions in modifying the hydrogen-bonded structure of water is in the order Mg2+ > Ca2+ > Sr2+ > Ba2+. The results are explained in the light of the structural properties of the anions and cations in the solutions in modifying the three dimensional hydrogen-bonded structure of water.  相似文献   

12.
《Nuclear Physics A》1987,468(2):193-236
The real part V(r); E) of the nucleon-nucleus mean field is assumed to have a Woods-Saxon shape, and accordingly to be fully specified by three quantities: the potential depth Uv(E), radius RV(E) and diffuseness av(E). At a given nucleon energy E these parameters can be determined from three different radial moments [rq]v = (4π/A) ∝V(r; E)rq dr. This is useful because a dispersion relation approach has recently been developed for extrapolating [rq]V(E) from positive to negative energy, using as inputs the radial moments of the real and imaginary parts of empirical optical-model potentials V(r; E) + iW(r; E). In the present work, the values of Uv(E), Rv(E) and av(E) are calculated in the case of neutrons in 208Pb in the energy domain −20 < E < 40 MeV from the values of [rq]V(E) for q = 0.8, 2 and 4. It is found that both UV(E) and Rv(E) have a characteristic energy dependence. The energy dependence of the diffuseness aa(E) is less reliably predicted by the method. The radius RV(E) increases when E decreases from 40 to 5 MeV. This behaviour is in agreement with empirical evidence. In the energy domain −10 MeV < E < 0, RV(E) is predicted to decrease with decreasing energy. The energy dependence of the root mean square radius is similar to that of RV(E). The potential depth Uv slightly increases when E decreases from 40 to 15 MeV and slightly decreases between 10 and 5 MeV; it is consequently approximately constant in the energy domain 5 < E < 20 MeV, in keeping with empirical evidence. The depth Uv increases linearly with decreasing E in the domain −10 MeV < E < 0. These features are shown to persist when one modifies the detailed input of the calculation, namely the empirical values of [rq]v(E) for E > 0 and the parametrization [rq]w(E) of the energy dependence of the radial moments of the imaginary part of the empirical optical-model potentials. In the energy domain −10 MeV < E < 0, the calculated V(r; E) yields good agreement with the experimental single-particle energies; the model thus accurately predicts the shell-model potential (E < 0) from the extrapolation of the optical-model potential (E > 0). In the dispersion relation approach, the real part V(r; E) is the sum of a Hartree-Fock type contribution VHF(r; E) and of a dispersive contribution ΔV(r; E). The latter is due to the excitation of the 208Pb core. The dispersion relation approach enables the calculation of the radial moment [rq]ΔV(E) from the parametrization [rq]w(E): several schematic models are considered which yield algebraic expressions for [rq]ΔV(E). The radial moments [rq]HF(E) are approximated by linear functions of E. When in addition, it is assumed that VHF(r; E) has a Woods-Saxon radial shape, the energy dependence of its potential parameters (UHF, RHF, aHF) can be calculated. Furthermore, the values of ΔV(r; E) can then be derived. It turns out that ΔV(r; E) is peaked at the nuclear surface near the Fermi energy and acquires a Woods-Saxon type shape when the energy increases, in keeping with previous qualitative estimates. It is responsible for the peculiar energy dependence of RV(E) in the vicinity of the Fermi energy.  相似文献   

13.
The negative impacts of chemotherapy on pediatric patients treated with chemotherapy during the formative years of brain development are understudied compared to adult chemotherapy cancer patients. This work investigated the morphometry, cortical thickness, and subcortical volumes using MRI and their correlations with behavioral measures in pediatric oncology survivors treated with chemotherapy. Chemotherapy-treated childhood cancer survivors (N = 15, 15.12 ± 5.98 years old) diagnosed with a non-central nervous system malignancy and healthy age-matched controls (N = 15, 15.13 ± 4.21 years old) were studied. MRI was acquired at 3 Tesla. Behavioral Rating Inventory of Executive Functioning (BRIEF) Parental Rating, Purdue Pegboard manual dexterity and n-back working memory measures were administered. Structural MRI scans at 3 Tesla were acquired. Voxel-based morphometry, cortical thickness and subcortical volumes were analyzed and correlated with behavioral scores. Parametric statistics with a p < .05 and adjusted for multiple comparison corrections were performed. Patients exhibited significantly smaller gray-matter volumes in the left globus pallidum, bilateral thalami, left caudate and left nucleus accumbens (p < .05) and thinner cortex in the right parahippocampal gyrus (p < .05) compared to controls. BRIEF scores were similar to normative values. Purdue Pegboard revealed manual dexterity deficits compared to normative values, and the n-back task showed working-memory deficits in patients compared to controls. Left thalamus volume positively correlated with dexterity performance (p = .029). The number of correct answers positively correlated and the number of incorrect answers negatively correlated with total-brain and white-matter volume (p < .05), but not gray-matter volume (p > .05). Our results support the hypothesis that the neurotoxicity of systemic chemotherapy has widespread negative effects on brain development in pediatric oncology patients with relatively mild cognitive deficits. MRI identified neuroanatomical changes have the potential to provide neural correlates of the sequelae associated with pediatric chemotherapy.  相似文献   

14.
Electron-energy loss spectra of potassium permanganate (KMnO4) with primary electron energies 25 eV<=E0<=500 eV show 7 peaks in the energy-loss range 1 eV<=ΔE<=10eV and are successfully analysed with a superposition of 7 independent Gaussians. The intensity of these lines follow roughly a power-law dependence on the primary energy I∝E 0 . There are two groups of lines, the first with an exponent α≈0.5, while the lines in the second group decay much stronger with increasingE 0 corresponding to a value 0.9<=α<=1.3. The 4 lines in the first group are identified as dipole allowed transitions by comparison to recent first principle molecular-orbital calculations for the (MnO4) molecule by H. Nakai et al. The dipole-allowed excitation spectrum obtained from this analysis agrees very well with these first principle calculations.  相似文献   

15.
PurposeTo investigate the utility of diffusion-weighted arterial spin labeling (DW-ASL) for detecting the progression of brain white matter lesions.Materials and methodsA total of 492 regions of interest (ROIs) in 41 patients were prospectively analyzed. DW-ASL was performed using the diffusion gradient prepulse of five b-values (0, 25, 60, 102, and 189) before the ASL readout. We calculated the water exchange rate (Kw) with post-processing using the ASL signal information for each b-value. The cerebral blood flow (CBF) was also calculated using b0 images. Using the signal information in FLAIR (fluid-attenuated inversion recovery) images, we classified the severity of white matter lesions into three grades: non-lesion, moderate, and severe. In addition, the normal Kw level was measured from DW-ASL data of 60 ROIs in five control subjects. The degree of variance of the Kw values (Kw-var) was calculated by squaring the value of the difference between each Kw value and the normal Kw level. All patient's ROIs were divided into non-progressive and progressive white matter lesions by comparing the present FLAIR images with those obtained 2 years before this acquisition.ResultsCompared to the non-progressive group, the progressive group had significantly lower CBF, significantly higher severity grades in FLAIR, and significantly greater Kw-var values. In a receiver operator characteristic curve analysis, a high area under the curve (AUC) of 0.89 was obtained with the use of Kw-var. In contrast, the AUCs of 0.59 for CBF and 0.72 for severity grades in FLAIR were obtained.ConclusionsThe DW-ASL technique can be useful to detect the progression of brain white matter lesions. This technique will become a clinical tool for patients with various degrees of white matter lesions.  相似文献   

16.
ObjectivesTo evaluate the diagnostic usefulness of synthetic T2-weighted images of the lumbar spine derived from ten-fold undersampled k-space data using GRAPPATINI, a combination of a model-based approach for rapid T2 and M0 quantification (MARTINI) extended by generalized autocalibrating partial parallel acquistion (GRAPPA).Materials and methodsOverall, 58 individuals (26 female, mean age 23.3 ± 8.1 years) were examined at 3 Tesla with sagittal and axial T2w turbo spin echo (TSE) sequences compared to synthetic T2weighted contrasts derived at identical effective echo times and spatial resolutions. Two blinded readers graded disk degeneration and evaluated the lumbar intervertebral disks for present herniation or annular tear. One reader reassessed all studies after four weeks. Weighted kappa statistics were calculated to assess inter-rater and intra-rater agreement. Also, all studies were segmented manually by one reader to compute contrast ratios (CR) and contrast-to-noise ratios (CNR) of the nucleus pulposus and the annulus fibrosus.ResultsOverall, the CRT2w was 4.45 ± 1.80 and CRT2synth was 4.71 ± 2.14. Both correlated (rsp = 0.768;p < 0.001) and differed (0.26 ± 1.38;p = 0.002) significantly. The CNRT2w was 1.73 ± 0.52 and CNRT2synth was 1.63 ± 0.50. Both correlated (rsp = 0.875;p < 0.001) and differed (−0.10 ± 0.25;p < 0.001) significantly. The inter-rater agreement was substantial to almost perfect (κ = 0.808–0.925) with the intra-rater agreement also substantial to almost perfect (κ = 0.862–0.963). The area under the curve of the receiver operating characteristics assessing disk herniation or annular tear ranged from 0.787 to 0.892.ConclusionsThis study concludes that synthetic images derived by GRAPPATINI can be used for clinical routine assessment with inter-rater and intra-rater agreements comparable to conventional T2w TSE.  相似文献   

17.
Recently, 3-T magnetic resonance imaging (MRI) has been introduced for bone imaging. Through higher signal-to-noise ratios, as compared to 1.5-T MRI, it promises to be a more powerful tool for the assessment of cortical and trabecular bone measures. The goal of our study was to compare MRI-derived cortical and trabecular bone measures to quantitative computed tomography (QCT)-derived bone mineral density (BMD). Using 3-T MRI in 51 postmenopausal women, apparent (app.) measures of bone volume/total volume, trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular separation were derived at the distal radius, distal tibia and calcaneus. Cortical thickness (Ct.Th) was calculated at the distal radius and distal tibia. These measures were compared to QCT-derived BMD of the spine, hip and radius. Significant correlations (?P<.05; ??P<.001; ???P<.0001) were found between spine BMD- and MRI-derived Ct.Th (rradius=.55, ?P<.05; rtibia=.67, ???P<.0001) and app. Tb.N (rradius=.33, ?P<.05; rtibia=.35, ?P<.05) at the radius and tibia. Furthermore, within the first 10 mm at the radius, an inverse correlation for Ct.Th and app. BV/TV (r6mm=−.56, P<.001; r10mm=−.36, P<.05) and app. Tb.Th (r6mm=−.54, P<.001; r10mm=−.41, P<.05) was found.  相似文献   

18.
Yield measurements have been performed on the reactions 37Cl(p, p0)37Cl, 37Cl(p, α0)34S (Ep = 1.17–1.70 MeV) and 37Cl(p, n0)37Ar, 37Cl(p.γ)38Ar (Ep = 0.64–2.92 MeV); detailed investigations are restricted to resonances below Ep = 1.79 MeV. Resonance energies, strengths and (some) widths are reported for 12, 26 and 247 resonances in the reactions (p, p0), (p, n0) and (p, γ), respectively.Simultaneous (p, α0) and (p, γ) yield measurements over selected Ep intervals in the Ep = 0.88–1.64 MeV range established the existence of 42 resonances decaying by both γ and α0 emission. Analysis of the γ-ray spectra of 100 37Cl(p, γ)38Ar resonances leads to precision excitation energies (ΔEx = 0.1–2 keV) of 57 bound states (Ex < 8 MeV) and branching ratios of the resonances and of 50 bound states.  相似文献   

19.
Muon bremsstrahlung photons converted in front of the DELPHI main tracker (TPC) in dimuon events at LEP1 were studied in two photon kinematic ranges: 0.2<E γ ≤1 GeV and transverse momentum with respect to the parent muon p T <40 MeV/c, and 1<E γ ≤10 GeV and p T <80 MeV/c. A good agreement of the observed photon rate with predictions from QED for the muon inner bremsstrahlung was found, contrary to the anomalous soft photon excess that has been observed recently in hadronic Z 0 decays. The obtained ratios of the observed signal to the predicted level of the muon bremsstrahlung are 1.06±0.12±0.07 in the photon energy range 0.2<E γ ≤1 GeV and 1.04±0.09±0.12 in the photon energy range 1<E γ ≤10 GeV. The bremsstrahlung dead cone is observed for the first time in the direct photon production at LEP. Deceased.  相似文献   

20.
By employing numerical solutions of the Poisson–Boltzmann equation we have studied the interface capacitance of flat electrodes with stripes of different potentials of zero charge ?pzc. The results depend on the ratio of the width of the stripes l to the dielectric screening length in the electrolyte, the Debye length dDebye, as well as on the difference Δ?pzc in relation kBT/e. As expected, the capacitance of a striped surface has its minimum at the mean potential of the surface if l/dDebye << 1 and displays two minima if l/dDebye >> 1. An unexpected result is that for Δ?pzc ? 0.2V, the transition between the two extreme cases does not occur when l ? dDebye, but rather when l > 10dDebye. As a consequence, a single minimum in the capacitance is observed for dilute electrolytes even for 100 nm wide stripes. The capacitance at the minimum is however higher than for homogeneous surfaces. Furthermore, the potential at the minimum deviates significantly from the potential of zero mean charge on the surface if l > 3dDebye and Δ?pzc is larger than about 4kBT/e. The capacitance of stepped, partially reconstructed Au(11n) surfaces is discussed as an example. Consequences for Parsons–Zobel-plots of the capacitances of inhomogeneous surfaces are likewise discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号