首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we develop a theoretical framework to investigate the influence of impulsive periodic disturbance on the evolutionary dynamics of a continuous trait, such as body size, in a general Lotka–Volterra‐type competition model. The model is formulated as a system of impulsive differential equations. First, we derive analytically the fitness function of a mutant invading the resident populations when rare in both monomorphic and dimorphic populations. Second, we apply the fitness function to a specific system of asymmetric competition under size‐selective harvesting and investigate the conditions for evolutionarily stable strategy and evolutionary branching by means of critical function analysis. Finally, we perform long‐term simulation of evolutionary dynamics to demonstrate the emergence of high‐level polymorphism. Our analytical results show that large harvesting effort or small impulsive harvesting period inhibits branching, while large impulsive harvesting period promotes branching. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We are interested in modeling the Darwinian evolution resulting from the interplay of phenotypic variation and natural selection through ecological interactions, in the specific scales of the biological framework of adaptive dynamics. Adaptive dynamics so far has been put on a rigorous footing only for direct competition models (Lotka–Volterra models) involving a competition kernel which describes the competition pressure from one individual to another one. We extend this to a multi-resources chemostat model, where the competition between individuals results from the sharing of several resources which have their own dynamics. Starting from a stochastic birth and death process model, we prove that, when advantageous mutations are rare, the population behaves on the mutational time scale as a jump process moving between equilibrium states (the polymorphic evolution sequence of the adaptive dynamics literature). An essential technical ingredient is the study of the long time behavior of a chemostat multi-resources dynamical system. In the small mutational steps limit this process in turn gives rise to a differential equation in phenotype space called canonical equation of adaptive dynamics. From this canonical equation and still assuming small mutation steps, we prove a rigorous characterization of the evolutionary branching points.  相似文献   

3.
In this paper, we investigate the dynamics of a delayed toxic phytoplankton-two zooplankton system incorporating the effects of Levy noise and white noise. The value of this study lies in two aspects: Mathematically, we first prove the existence of a unique global positive solution of the system, and then we investigate the sufficient conditions that guarantee the stochastic extinction and persistence in the mean of each population. Ecologically, via numerical simulations, we find that the effect of white noise or Levy noise on the stochastic extinction and persistence of phytoplankton and zooplankton are similar, but the synergistic effects of the two noises on the stochastic extinction and persistence of these plankton are stronger than that of single noise. In addition, an increase in the toxin liberation rate or the intraspecific competition rate of zooplankton was found to be capable to increase the biomass of the phytoplankton but decrease the biomass of zooplankton. These results may help us to better understand the phytoplankton-zooplankton dynamics in the fluctuating environments.  相似文献   

4.
In this paper, we propose a stochastic non-autonomous Lotka–Volterra predator–prey model with impulsive effects and investigate its stochastic dynamics. We first prove that the subsystem of the system has a unique periodic solution which is globally attractive. Furthermore, we obtain the threshold value in the mean which governs the stochastic persistence and the extinction of the prey–predator system. Our results show that the stochastic noises and impulsive perturbations have crucial effects on the persistence and extinction of each species. Finally, we use the different stochastic noises and impulsive effects parameters to provide a series of numerical simulations to illustrate the analytical results.  相似文献   

5.
In this paper we will develop a new stochastic population model under regime switching. Our model takes both white and color environmental noises into account. We will show that the white noise suppresses explosions in population dynamics. Moreover, from the point of population dynamics, our new model has more desired properties than some existing stochastic population models. In particular, we show that our model is stochastically ultimately bounded.  相似文献   

6.
Epigenetic mechanisms are increasingly recognised as integral to the adaptation of species that face environmental changes. In particular, empirical work has provided important insights into the contribution of epigenetic mechanisms to the persistence of clonal species, from which a number of verbal explanations have emerged that are suited to logical testing by proof-of-concept mathematical models. Here, we present a stochastic agent-based model and a related deterministic integrodifferential equation model for the evolution of a phenotype-structured population composed of asexually-reproducing and competing organisms which are exposed to novel environmental conditions. This setting has relevance to the study of biological systems where colonising asexual populations must survive and rapidly adapt to hostile environments, like pathogenesis, invasion and tumour metastasis. We explore how evolution might proceed when epigenetic variation in gene expression can change the reproductive capacity of individuals within the population in the new environment. Simulations and analyses of our models clarify the conditions under which certain evolutionary paths are possible and illustrate that while epigenetic mechanisms may facilitate adaptation in asexual species faced with environmental change, they can also lead to a type of “epigenetic load” and contribute to extinction. Moreover, our results offer a formal basis for the claim that constant environments favour individuals with low rates of stochastic phenotypic variation. Finally, our model provides a “proof of concept” of the verbal hypothesis that phenotypic stability is a key driver in rescuing the adaptive potential of an asexual lineage and supports the notion that intense selection pressure can, to an extent, offset the deleterious effects of high phenotypic instability and biased epimutations, and steer an asexual population back from the brink of an evolutionary dead end.  相似文献   

7.
Based on the theoretical framework of adaptive dynamics, the evolution of the predator-prey model with functional response of group defense effect on the predator handling time, was investigated. Firstly, in view of the interaction of predator populations with interspecific competition, the evolutionary conditions for a single predator population to split into 2 populations with different strategies through evolutionary branching were given. Secondly, when the ecological equilibrium of the model is unstable and the system has a limit cycle, the population will have strong coexistence under large mutation, but this coexistence will be evolutionarily unstable. Finally, the conclusions for the model with Holling-Ⅱ type functional response were compared. The results indicate that, with a sufficiently large prey carrying capacity, group defense effects can evolutionarily lead to the extinction of predators. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

8.
吕敬亮  王克 《数学学报》2011,(5):853-860
本文提出且讨论了一类两种群随机的改进Lotka Volterra竞争模型.白噪声及有色噪声都在本文中被考虑.我们得到了全局唯一正解、随机有界性、随机持久和随机灭绝等种群动力性质的充分条件.  相似文献   

9.
We investigate the evolutionary outcomes of a single species population subject to Allee effects within the framework of a continuous strategy evolutionary game theory (EGT) model. Our model assumes a single trait creates a phenotypic trade-off between carrying capacity (i.e., competition) and predator evasion ability following a Gaussian distribution. This assumption contributes to one of our interesting findings that evolution prevents extinction even when population exhibits strong Allee effects. However, the extinction equilibrium can be an ESS under some special distributions of anti-predation phenotypes. The ratio of variation in competition and anti-predation phenotypes plays an important role in determining global dynamics of our EGT model: (a) evolution may suppress strong Allee effects for large values of this ratio; (b) evolution may preserve strong Allee effects for small values of this ratio by generating a low density evolutionary stable strategy (ESS) equilibrium which can serve as a potential Allee threshold; and (c) intermediate values of this ratio can result in multiple ESS equilibria.  相似文献   

10.
This paper proposes a new definition of permanence for stochastic population models, which overcomes some limitations and deficiency of the existing ones. Then, we explore the permanence of two-dimensional stochastic Lotka–Volterra systems in a general setting, which models several different interactions between two species such as cooperation, competition, and predation. Sharp sufficient criteria are established with the help of the Lyapunov direct method and some new techniques. This study reveals that the stochastic noises play an essential role in the permanence and characterize the systems being permanent or not.  相似文献   

11.
The paper explores an eco-epidemiological model with weak Allee in predator, and the disease in the prey population. We consider a predator-prey model with type II functional response. The curiosity of this paper is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We perform the local and global stability analysis of the equilibrium points and the Hopf bifurcation analysis around the endemic equilibrium point. Further we pay attention to the chaotic dynamics which is produced by disease. Our numerical simulations reveal that the three species eco-epidemiological system without weak-Allee induced chaos from stable focus for increasing the force of infection, whereas in the presence of the weak-Allee effect, it exhibits stable solution. We conclude that chaotic dynamics can be controlled by the Allee parameter as well as the competition coefficients. We apply basic tools of non-linear dynamics such as Poincare section and maximum Lyapunov exponent to identify chaotic behavior of the system.  相似文献   

12.
ABSTRACT. The evolutionary stability concepts continuously stable strategies (CSS) and evolutionarily stable neighborhood invader strategies (ESNIS) share two properties in common. First, they are both evolutionarily stable strategies (ESS). Secondly, given any strategy in the close neighborhood of the CSS or ESNIS, there are some strategies that are closer to the CSS or ESNIS that can invade it. An ESNIS is a CSS but the converse is not true in general. We examine evolutionary adaptive dynamics in the neighborhood of a CSS that is not an ESNIS. We show that if an evolutionary game possesses a CSS which is not an ESNIS, the succession of strategies mediated by natural selection become arbitrarily close to the CSS but the precise value of the CSS cannot be attained unless the CSS is the first strategy to invade into the environment and is henceforth never perturbed. Thus if evolution does not start with the CSS that is not an ESNIS, we will have a phenomenon of bounded evolutionary succession that does not come to an end. The analysis is applied to a class of monomorphic population evolutionary game models in which species ecological interaction is modeled by the Lotka‐Volterra equations.  相似文献   

13.
Alcohol abuse is a major social problem, which is often called social epidemic, for the some similarities to the classical infectious diseases. In this paper, we formulated a new stochastic alcoholism model based on the deterministic model proposed in \cite{Wangxy}, with the mortalities of all populations as well as the contact infected coefficient are all perturbed. Based on this model, we investigate the long-term stochastic dynamics behaviors of two equilibria of the corresponding deterministic model and point out the effect of random disturbance on the stability of the system. Finally, we carry out numerical simulations to support our theoretical results.  相似文献   

14.
In this article, we propose and study a generalized Ricker–Beverton–Holt competition model subject to Allee effects to obtain insights on how the interplay of Allee effects and contest competition affects the persistence and the extinction of two competing species. By using the theory of monotone dynamics and the properties of critical curves for non-invertible maps, our analysis show that our model has relatively simple dynamics, i.e. almost every trajectory converges to a locally asymptotically stable equilibrium if the intensity of intra-specific competition intensity exceeds that of inter-specific competition. This equilibrium dynamics is also possible when the intensity of intra-specific competition intensity is less than that of inter-specific competition but under conditions that the maximum intrinsic growth rate of one species is not too large. The coexistence of two competing species occurs only if the system has four interior equilibria. We provide an approximation to the basins of the boundary attractors (i.e. the extinction of one or both species) where our results suggests that contest species are more prone to extinction than scramble ones are at low densities. In addition, in comparison to the dynamics of two species scramble competition models subject to Allee effects, our study suggests that (i) Both contest and scramble competition models can have only three boundary attractors without the coexistence equilibria, or four attractors among which only one is the persistent attractor, whereas scramble competition models may have the extinction of both species as its only attractor under certain conditions, i.e. the essential extinction of two species due to strong Allee effects; (ii) Scramble competition models like Ricker type models can have much more complicated dynamical structure of interior attractors than contest ones like Beverton–Holt type models have; and (iii) Scramble competition models like Ricker type competition models may be more likely to promote the coexistence of two species at low and high densities under certain conditions: At low densities, weak Allee effects decrease the fitness of resident species so that the other species is able to invade at its low densities; While at high densities, scramble competition can bring the current high population density to a lower population density but is above the Allee threshold in the next season, which may rescue a species that has essential extinction caused by strong Allee effects. Our results may have potential to be useful for conservation biology: For example, if one endangered species is facing essential extinction due to strong Allee effects, then we may rescue this species by bringing another competing species subject to scramble competition and Allee effects under certain conditions.  相似文献   

15.
In this paper, 2-dimensional (2D) magnetohydrodynamics (MHD) equations perturbed by multiplicative noises in both the velocity and the magnetic field is studied. We first considered the stability, or the upper semi-continuity, for equivalent random dynamical systems (RDS), and then applying the abstract result we established the existence and the upper semi-continuity of tempered random attractors for the stochastic MHD equations. This result shows that the asymptotic behavior of MHD equations is stable under stochastic perturbations.  相似文献   

16.
Microbial dormancy is an evolutionary trait that has emerged independently at various positions across the tree of life. It describes the ability of a microorganism to switch to a metabolically inactive state that can withstand unfavourable conditions. However, maintaining such a trait requires additional resources that could otherwise be used to increase e.g. reproductive rates. In this paper, we aim for gaining a basic understanding under which conditions maintaining a seed bank of dormant individuals provides a “fitness advantage” when facing resource limitations and competition for resources among individuals (in an otherwise stable environment). In particular, we wish to understand when an individual with a “dormancy trait” can invade a resident population lacking this trait despite having a lower reproduction rate than the residents. To this end, we follow a stochastic individual-based approach employing birth-and-death processes, where dormancy is triggered by competitive pressure for resources. In the large-population limit, we identify a necessary and sufficient condition under which a complete invasion of mutants has a positive probability. Further, we explicitly determine the limiting probability of invasion and the asymptotic time to fixation of mutants in the case of a successful invasion. In the proofs, we observe the three classical phases of invasion dynamics in the guise of Coron et al. (2017, 2019).  相似文献   

17.
Abstract To understand the impact of predation by different types of predators on the vole population dynamics, we formulate a three differential equation model describing the population dynamics of voles, the “specialist predator” and the “generalist predator.” First we perform a local stability study of the different steady states of the basic model and deduce that the predation rates of the “specialist” as well as the “generalist” predator are the main parameters controlling the existence/extinction criteria of the concerned populations. Next we analyze the model from a thermodynamic perspective and study the thermodynamic stability of the different equilibria. Finally using stochastic driving forces, we incorporate the exogenous factor of environmental forcing and investigate the stochastic stability of the system. We compare the stability criteria of the different steady states under deterministic, thermodynamic and stochastic situations. The analysis reveals that when the “specialist” and the “generalist” predator are modeled separately, the system exhibits rich dynamics and the predation rates of both types of predators play a major role in controlling vole oscillation and/or stability. These findings are also seen to resemble closely with the observed behavior of voles in the natural setting. Numerical simulations are carried out to illustrate analytical findings.  相似文献   

18.
The present study is designed to examine the effect of environmental noises in the asymptotic properties of a stochastic Gilpin–Ayala model on patches under regime switching. The Gilpin–Ayala parameter is also allowed to switch. Sufficient conditions for extinction and persistence of species are established.  相似文献   

19.
ABSTRACT

This paper focuses on a predator-prey system with foraging arena scheme incorporating stochastic noises. This SDE model is generated from a deterministic framework by the stochastic parameter perturbation. We then study how the correlations of the environmental noises affect the long-time behaviours of the SDE model. Later on the existence of a stationary distribution is pointed out under certain parametric restrictions. Numerical simulations are carried out to substantiate the analytical results.  相似文献   

20.
介绍了进化动力学的基本知识和研究现状,把表型特征引入种群动力学模型,进而推导出进化适应动力学模型;总结了如何建立适应度函数以及分析研究进化动力学行为的一般理论和方法,并列举实例,模拟分析验证前面所陈述的理论方法,模拟结果说明收获对生物进化产生重要影响,并有效解释了物种多样性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号