首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic aeroelastic behavior of an elastically supported airfoil is studied in order to investigate the possibilities of increasing critical flutter speed by exploiting its chord-wise flexibility. The flexible airfoil concept is implemented using a rigid airfoil-shaped leading edge, and a flexible thin laminated composite plate conformally attached to its trailing edge. The flutter behavior is studied in terms of the number of laminate plies used in the composite plate for a given aeroelastic system configuration. The flutter behavior is predicted by using an eigenfunction expansion approach which is also used to design a laminated plate in order to attain superior flutter characteristics. Such an airfoil is characterized by two types of flutter responses, the classical airfoil flutter and the plate flutter. Analysis shows that a significant increase in the critical flutter speed can be achieved with high plunge and low pitch stiffness in the region where the aeroelastic system exhibits a bimodal flutter behavior, e.g., where the airfoil flutter and the plate flutter occur simultaneously. The predicted flutter behavior of a flexible airfoil is experimentally verified by conducting a series of systematic aeroelastic system configurations wind tunnel flutter campaigns. The experimental investigations provide, for each type of flutter, a measured flutter response, including the one with indicated bimodal behavior.  相似文献   

2.
The spectrograph is a signal-processing tool often used for the frequency domain analysis of time-varying signals. When the signal to be analyzed is a function of time, the spectrograph represents the frequency content of the signal as a sequence of power spectra that change with time. In this paper, the usefulness of the technique is demonstrated in its application to the analysis of the time history response of a nonlinear aeroelastic system. The aeroelastic system is modelled analytically as a two-dimensional, rigid airfoil section free to move in both the bending and pitching directions and possessing a rigid flap. The airfoil is mounted by torsional and translational springs attached at the elastic axis, and the flap is used to provide the forcing input to the system. The nonlinear system is obtained by introducing a freeplay type of nonlinearity in the pitch degree-of-freedom restoring moment. The airfoil is immersed in an aerodynamic flow environment, modelled using incompressible thin airfoil theory for unsteady oscillatory motion. The equations of motion are solved using a fourth-order Runge–Kutta numerical integration technique to provide time-history solutions of the response of the airfoil in the pitch and plunge directions. Time-histories are obtained for the nonlinear responses of the linear and nonlinear aeroelastic systems to a sine-sweep input. The time-histories are analyzed using the spectrographic technique, and the frequency content of the response is plotted directly as a function of the input frequency. Results show that the combination of the sine-sweep input with the spectrographic analysis permits a unique insight into the behavior of the nonlinear system with a minimum of testing. It is shown that the frequency of the nonlinear system response is a function of the input frequency and one other characteristic frequency that can be associated with the limit cycle oscillations of the same nonlinear system subject to a transient input.  相似文献   

3.
We perform an analytical and experimental investigation into the dynamics of an aeroelastic system consisting of a plunging and pitching rigid airfoil supported by a linear spring in the plunge degree of freedom and a nonlinear spring in the pitch degree of freedom. The experimental results show that the onset of flutter takes place at a speed smaller than the one predicted by a quasi-steady aerodynamic approximation. On the other hand, the unsteady representation of the aerodynamic loads accurately predicts the experimental value. The linear analysis details the difference in both formulation and provides an explanation for this difference. Nonlinear analysis is then performed to identify the nonlinear coefficients of the pitch spring. The normal form of the Hopf bifurcation is then derived to characterize the type of instability. It is demonstrated that the instability of the considered aeroelastic system is supercritical as observed in the experiments.  相似文献   

4.
5.
The aeroelastic response of a NACA 0012 airfoil in the flow regimes prior to flutter is investigated in a wind tunnel. We observe intermittent bursts of periodic oscillations in the pitch and plunge response, that appear in an irregular manner from a background of relatively lower amplitude aperiodic fluctuations. As the flow speed is increased, the intermittent bursts last longer in time until eventually transitioning to a fully developed periodic response, indicating the onset of flutter. The repeating patterns in the measured response are visualized using recurrence plots. We show that statistics of the recurrence states extracted from these plots can be used to develop model-free precursors that forewarn an impending transition to flutter, well before its onset.  相似文献   

6.
This study focuses on numerically investigating the response dynamics of a pitch–plunge airfoil with structural nonlinearity under dynamic stall conditions. The aeroelastic responses are investigated for both deterministic and randomly time varying flow conditions. To that end, a pitch–plunge airfoil under dynamic stall condition is considered and the nonlinear aerodynamic loads are computed using a Leishman–Beddoes formulation. It is shown that the presence of structural nonlinearities can give rise to a variety of dynamical responses in the pre-flutter regime. Next, a response analysis under the presence of a randomly fluctuating wind is carried out. It is demonstrated that the route to flutter occurs via a regime of pre-flutter oscillations called intermittency. Finally, the manifestation of these stochastic responses is characterized by invoking stochastic bifurcation concepts. The route to flutter via intermittency is presented in terms of topological changes occurring in the joint-probability density function of the state variables.  相似文献   

7.
The nonlinear aeroelastic response of a two-degree-of-freedom airfoil with freeplay and cubic nonlinearities in supersonic flows is investigated. The second-order piston theory is used to analyze a double-wedge airfoil. Then, the fold bifurcation and the amplitude jump phenomenon are detected by the averaging method and the multi-variable Floquet theory. The analytical results are further verified by numerical simulations. Finally, the influence of the freeplay parameters on the aeroelastic response is analyzed in detail.  相似文献   

8.
The dynamically-coupled interactions of vortex gusts encountering a symmetric Joukowski airfoil on linear elastic supports is formulated analytically and evaluated numerically using a time-dependent conformal mapping. The Brown and Michael framework models the unsteady shedding of vorticity from the airfoil into the wake, and the aeroelastic motion of the airfoil is analyzed using quasi-steady, apparent mass, and fully-unsteady aerodynamic models. Special attention is paid to the influences of the strength of the incident vortex and the airfoil natural frequency on the initial upstream placement of a vortex gust that achieves direct impingement. These results are weakly sensitive to the initial vortex position in the limits of either large or small structural natural frequency, and the initial vertical vortex position to achieve impingement changes monotonically with the vortex strength. A comparison of the numerical model with available experimental vortex gust measurements over stationary airfoils highlights the appropriate use of the point-vortex model for inviscid vortex–airfoil interaction problems without significant vortex strength decay, which occurs for predominantly viscous interactions of close vortex–airfoil encounters.  相似文献   

9.
Liu  Liping  Dowell  Earl H. 《Nonlinear dynamics》2004,37(1):31-49
The nonlinear dynamical response of a two-degree-of-freedom aeroelastic airfoil motion with cubic restoring forces is investigated. A secondary bifurcation after the primary Hopf (flutter) bifurcation is detected for a cubic hard spring in the pitch degree-of-freedom. Furthermore, there is a hysteresis in the secondary bifurcation: starting from different initial conditions the motion may jump from one limit cycle to another at different fluid flow velocities. A high-order harmonic balance method is employed to investigate the possible bifurcation branches. Furthermore, a numerical time simulation procedure is used to confirm the stable and unstable bifurcation branches.  相似文献   

10.
翼型颤振压电俘能器的输出特性研究   总被引:1,自引:0,他引:1  
田海港  单小彪  张居彬  隋广东  谢涛 《力学学报》2021,53(11):3016-3024
压电俘能器能够为自然界中低功率的微机电系统持续供能. 为了模拟机翼的沉浮?俯仰二自由度运动和有效俘获气动弹性振动能量, 本文提出一种新颖的翼型颤振压电俘能器. 基于非定常气动力模型, 推导翼型颤振压电俘能器流?固?电耦合场的数学模型. 建立有限元模型, 模拟机翼的沉浮?俯仰二自由度运动, 获得机翼附近的涡旋脱落和流场特性. 搭建风洞实验系统, 制作压电俘能器样机. 利用实验验证理论和仿真模型的正确性, 仿真分析压电俘能器结构参数对其气动弹性振动响应和俘获性能的影响. 结果表明: 理论分析、仿真模拟和实验研究获得的输出电压具有较好的一致性, 验证建立数学和仿真模型的正确性. 仿真分析获得机翼附近的压力场变化云图, 表明交替的压力差驱动机翼发生二自由度沉浮?俯仰运动. 当风速超过颤振起始速度时, 压电俘能器发生颤振, 并表现为极限环振荡. 当偏心距为0.3和风速为16 m/s时, 可获得最大输出电压为17.88 V和输出功率为1.278 mW. 功率密度为7.99 mW/cm3, 相比较于其他压电俘能器, 能实现优越的俘获性能. 研究结果对设计更高效的翼型颤振压电俘能器提供重要的指导意义.   相似文献   

11.
In this paper, an airfoil-based piezoaeroelastic energy harvesting system is proposed with an additional supporting device to harvest the mechanical energy from the leadlag motion. A dimensionless dynamic model is built considering the large-effective-angle-of-attack vibrations causing (1) the nonlinear coupling between the pitch–plunge–leadlag motions, (2) the inertia nonlinearity, and (3) the aerodynamic nonlinearity modeled by the ONERA dynamic stall model. Cubic hardening stiffness is introduced in the pitch degree of freedom for persistent vibrations with acceptable amplitude beyond the flutter boundary. The nonlinear aeroelastic response and the average power output are numerically studied. Limit cycle oscillations are observed and, as the flow velocity exceeds a secondary critical speed, the system experiences complex vibrations. The power output from the leadlag motion is smaller than that from the plunge motion, whereas the gap is narrowed with increasing flow velocity. Case studies are performed toward the effects of several dimensionless system parameters, including the nonlinear torsional stiffness, airfoil mass eccentricity, airfoil radius of gyration, mass of the supporting devices, and load resistances in the external circuits. The optimal parameter values for the power outputs from the plunge and leadlag motions are, respectively, obtained. Beyond the secondary critical speed, it is shown that the variations of the power outputs with those parameters become irregular with fluctuations and multiple local maximums. The bifurcation analysis shows the mutual transitions between the limit cycle oscillations, multi-periodic vibrations, and possible chaos. The influences of these complex vibrations on the power outputs are discussed.  相似文献   

12.
Camber effects in the dynamic aeroelasticity of compliant airfoils   总被引:1,自引:0,他引:1  
This paper numerically investigates the effect of chordwise flexibility on the dynamic stability of compliant airfoils. A classical two-dimensional aeroelastic model is expanded with an additional degree of freedom to capture time-varying camber deformations, defined by a parabolic bending profile of the mean aerodynamic chord. Aerodynamic forces are obtained from unsteady thin airfoil theory and the corresponding compliant-airfoil inertia and stiffness from finite-element analysis. Vg and state-space stability methods have been implemented in order to compute flutter speeds. The study looks at physical realizations with an increasing number of degrees of freedom, starting with a camber-alone system. It is shown that single camber leads to flutter, which occurs at a constant reduced frequency and is due to the lock in between the shed wake and the camber motion. The different combinations of camber deformations with pitch and plunge motions are also studied, including parametric analyses of their aeroelastic stability characteristics. A number of situations are identified in which the flutter boundary of the compliant airfoil exhibits a significant dip with respect to the rigid airfoil models. These results can be used as a first estimation of the aeroelastic stability boundaries of membrane-wing micro air vehicles.  相似文献   

13.
This paper deals with the aeroelastic modeling and analysis of a 2-D oscillating airfoil in ground effect, elastically constrained by linear and torsional springs and immersed in an incompressible potential flow (typical section) at a finite distance from the ground. This work aims to extend Theodorsen theory, valid in an unbounded flow domain, to the case of weak ground effect, i.e., for clearances above half the airfoil chord. The key point is the determination of the aerodynamic loads, first in the frequency domain and then in the time domain, accounting for their dependence on the ground distance. The method of images is exploited in order to comply with the impermeability condition on the ground. The new integral equation in the unknown vortex distribution along the chord and the wake is solved using asymptotic expansions in the perturbation parameter defined as the inverse of the non-dimensional ground clearance of the airfoil. The mathematical model describing the aeroelastic system is transformed from the frequency domain into the time domain and then in a pure differential form using a finite-state aerodynamic approximation (augmented states). The typical section, which the developed theory is applied to, is obtained as a reduced model of a wing box finite element representation, thus allowing comparison with the corresponding aeroelastic analysis carried out by a commercial solver based on a 3-D lifting surface aerodynamic model. Stability (flutter margins) and response of the airfoil both in frequency and time domains are then investigated. In particular, within the developed theory, the solution of the Wagner problem can be directly achieved confirming an asymptotic trend of the aerodynamic coefficients toward the steady-state conditions different from that relative to the unbounded domain case. The dependence of flutter speed and the frequency response functions on ground clearance is highlighted, showing the usefulness of this approach in efficiently and robustly accounting for the presence of the ground when unsteady analysis of elastic lifting surfaces in weak ground effect is required.  相似文献   

14.
The unsteady lift forces that act on an airfoil in turbulent flow are an undesirable source of vibration and noise in many industrial applications. Methods to predict these forces have traditionally treated the airfoil as a flat plate. At higher frequencies, where the relevant turbulent length scales are comparable to the airfoil thickness, the flat plate approximation becomes invalid and results in overprediction of the unsteady force spectrum. This work provides an improved methodology for the prediction of the unsteady lift forces that accounts for the thickness of the airfoil. An analytical model was developed to calculate the response of the airfoil to high frequency gusts. The approach is based on a time-domain calculation with a sharp-edged gust and accounts for the distortion of the gust by the mean flow around the airfoil leading edge. The unsteady lift is calculated from a weighted integration of the gust vorticity, which makes the model relatively straightforward to implement and verify. For routine design calculations of turbulence-induced forces, a closed-form gust response thickness correction factor was developed for NACA 65 series airfoils.  相似文献   

15.
In this paper, the effect of a cubic structural restoring force on the flutter characteristics of a two-dimensional airfoil placed in an incompressible flow is investigated. The aeroelastic equations of motion are written as a system of eight first-order ordinary differential equations. Given the initial values of plunge and pitch displacements and their velocities, the system of equations is integrated numerically using a fourth order Runge-Kutta scheme. Results for soft and hard springs are presented for a pitch degree-of-freedom nonlinearity. The study shows the dependence of the divergence flutter boundary on initial conditions for a soft spring. For a hard spring, the nonlinear flutter boundary is independent of initial conditions for the spring constants considered. The flutter speed is identical to that for a linear spring. Divergent flutter is not encountered, but instead limit-cycle oscillation occurs for velocities greater than the flutter speed. The behaviour of the airfoil is also analysed using analytical techniques developed for nonlinear dynamical systems. The Hopf bifurcation point is determined analytically and the amplitude of the limit-cycle oscillation in post-Hopf bifurcation for a hard spring is predicted using an asymptotic theory. The frequency of the limit-cycle oscillation is estimated from an approximate method. Comparisons with numerical simulations are carried out and the accuracy of the approximate method is discussed. The analysis can readily be extended to study limit-cycle oscillation of airfoils with nonlinear polynomial spring forces in both plunge and pitch degrees of freedom.  相似文献   

16.
The frequency lock-in during the nonlinear vibration of a turbomachinery blade is modeled using a spring-mounted airfoil coupled with a van der Pol Oscillator (VDP) oscillator. The proposed reduced-order model uses the nonlinear VDP oscillator to represent the oscillatory nature of wake dynamics caused by the vortex shedding. The damping term in the VDP oscillator is assumed to be nonlinear. The coupled equations governing the pitch and plunge motion of an airfoil are used to approximate the vibration of a turbomachinery blade. Springs having cubic-order nonlinearity for their stiffnesses are used to mount the airfoil. The unsteady lift acting on the blade is modeled using a self-excited nonlinear wake oscillator. The model for wake dynamics takes into account the influence of blade inertia. The nonlinear coupled three degrees of freedom (dof) aeroelastic system is studied for instability resulting in the frequency lock-in phenomenon. The equations are transformed into non-dimensional form, and then the frequencies of the coupled system are plotted to demonstrate the frequency lock-in. Further, the method of multiple scales is used to derive modulation equations which represent the amplitude and phase of the oscillation. The results obtained using the method of multiple scales are compared with direct numerical solutions to verify the present modeling method. The steady-state amplitudes of the response are plotted against the detuning parameter, which represents the frequency response curve. Further, the sensitivity of non-dimensional parameters such as coupling coefficients, mass ratio, reduced velocity, static unbalance, structural damping coefficient and the ratio of uncoupled pitch and plunge natural frequencies on the frequency response is investigated. The study revealed that parameters such as mass ratio, reduced velocity, structural damping coefficient, and coupling coefficients have a stronger influence in suppressing the amplitude of vibration. Meanwhile, parameters such as the frequency ratio, static unbalance, reduced velocity, and mass ratio significantly affect the range of frequency in which the lock-in phenomenon happens. Further, linear perturbation analysis is done to understand the qualitative effect of the system parameters such as coupling coefficients, mass ratio, frequency ratio, and static unbalance on the range of lock-in.  相似文献   

17.
对于大长细比导弹,需要在设计阶段准确计算气动弹性/气动伺服弹性,但其复杂的气动力给计算带来困难,因此气动力降阶模型是突破大长细比导弹跨音速气动弹性分析与控制瓶颈的关键技术.虽然气动力模型降阶方法已在预测二维机翼结构的气动弹性方面取得重要进展,但几乎未见关于全机模型的气动力降阶模型研究报道.本文基于递归Wiener模型的气动力降阶方法,利用CFD计算的气动力作为模型辨识数据,用鲁棒子空间和Levenberg-Marquardt算法辨识降阶模型参数,建立了大长细比导弹气动力降阶模型.在此基础上与大长细比导弹有限元模型相结合,构造出气动弹性降阶模型,并在数值仿真中测试气动弹性降阶模型在不同马赫数下的适用性.数值仿真结果表明,该气动弹性降阶模型能够精确预测导弹模型在不同飞行条件下的非定常气动力和导弹模型的气动弹性频率响应特性.  相似文献   

18.
We investigate experimentally how controlled freeplay nonlinearity affects harvesting energy from a wing-based piezoaeroelastic energy harvesting system. This system consisits of a rigid airfoil which is supported by a nonlinear torsional spring (freeplay) in the pitch degree of freedom and a linear flexural spring in the plunge degree of freedom. By attaching a piezoelectric material (PSI-5A4E) to the plunge degree of freedom, we can convert aeroelastic vibrations to electrical energy. The focus of this study is placed on the effects of the freeplay nonlinearity gap on the behavior of the harvester in terms of cut-in speed and level of harvested power. Although the freeplay nonlinearity may result in subcritical Hopf bifurcations (catastrophic for real aircrafts), harvesting energy at low wind speeds is beneficial for designing piezoaeroelastic systems. It is demonstrated that increasing the freeplay nonlinearity gap can decrease the cut-in speed through a subcritical instability and gives the possibility to harvest energy at low wind speeds. The results also demonstrate that an optimum value of the load resistance exists, at which the level of the harvested power is maximized.  相似文献   

19.
The purpose of this work is to show that a linearized implicit scheme for the flow resolution can be an efficient and accurate method for solving fluid-structure interaction. The fluid is modeled by the Euler equations in two dimensions and the structure by a one (free piston) or a two (NACA0012 airfoil) degrees of freedom system. The schemes are developed using a finite volume/finite element formulation and, stating the moving boundary problem in the space-time domain, the Riemann solver is generalized in a suitable manner. Assuming a modal decomposition for the structure's response, an analytical solution to the equation of motion is obtained.

The effects of the linearized implicit scheme on the aeroelastic response are demonstrated on the free piston and the NACA 0012 airfoil problems. In the latter case, we focus on the capability of the linearized implicit scheme to accurately predict the stability limit of the coupled response (wing flutter analysis). Although the above analysis is performed using a rigid transformation, a robust moving mesh strategy is presented for more general 2-D and 3-D deformations.  相似文献   

20.
Nonlinear dynamic behaviors of an aeroelastic airfoil with free-play in transonic air flow are studied. The aeroelastic response is obtained by using time-marching approach with computational fluid dynamics (CFD) and reduced order model (ROM) techniques. Several standardized tests of transonic flutter are presented to validate numerical approaches. It is found that in time-marching approach with CFD technique, the time-step size has a significant effect on the calculated aeroelastic response, especially for cases considering both structural and aerodynamic nonlinearities. The nonlinear dynamic behavior for the present model in transonic air flow is greatly different from that in subsonic regime where only simple harmonic oscillations are observed. Major features of the responses in transonic air flow at different flow speeds can be summarized as follows. The aeroelastic responses with the amplitude near the free-play are dominated by single degree of freedom flutter mechanism, and snap-though phenomenon can be observed when the air speed is low. The bifurcation diagram can be captured by using ROM technique, and it is observed that the route to chaos for the present model is via period-doubling, which is essentially caused by the free-play nonlinearity. When the flow speed approaches the linear flutter speed, the aeroelastic system vibrates with large amplitude, which is dominated by the aerodynamic nonlinearity. Effects of boundary layer and airfoil profile on the nonlinear responses of the aeroelastic system are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号