首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction in doped armchair graphene nanoribbon. The effects of both external magnetic field and electron-Holstein phonon on RKKY interaction have been addressed. RKKY interaction as a function of distance between localized moments has been analyzed. It has been shown that a magnetic field along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain both transverse and longitudinal static spin susceptibilities of armchair graphene nanoribbon in the presence of electron-phonon coupling and magnetic field. The spin susceptibility components are calculated using the spin dependent Green’s function approach for Holstein model Hamiltonian. The effects of spin polarization on the dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show the influences of magnetic field on the spatial behavior of in-plane and longitudinal RKKY interactions are different in the presence of magnetic field.  相似文献   

2.
Indirect exchange interaction between two magnetic external atoms, named by Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction, has been presented in the staggered armchair graphene nanoribbon. We have studied RKKY interaction as a function of distance between localized moments. It has been shown that a magnetic ordering along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. The static spin susceptibility components of armchair graphene nanoribbon have been calculated to find exchange interaction between arbitrary components of magnetic moments. We have exploited Green’s function approach in order to calculate spin susceptibility components of electronic gas in nanoribbon structure in the context of tight binding model Hamiltonian. The effects of parameter and ribbon width on the dependence of exchange interaction on distance between moments are investigated. Our results show the spin polarization along perpendicular to the plane leads to anisotropic behavior for exchange interaction between the two magnetic moments. In other words the spatial behavior of RKKY interaction between longitudinal components of magnetic moments is different from that of transverse components.  相似文献   

3.
The spin and charge correlations induced in the conduction electron sea by the presence of a spin-1=2 magnetic impurity are investigated for one-dimensional electrons. For correlated conduction electrons, the RKKY interaction between magnetic impurities exhibits only a slow algebraic decay with distance. Increasing the exchange coupling between conduction electrons and magnetic impurity leads to a competition between the RKKY interaction and the Kondo effect. For a two-impurity model, we study the influence of the electronic correlations on this competition. Furthermore, the Kondo screening cloud and the local spin susceptibility far away from a magnetic impurity are discussed.  相似文献   

4.
We have studied both dynamical and static spin conductivities of Heisenberg antiferromagnet on honeycomb lattice in the presence of a magnetic long range ordering. The effects of spatial anisotropy as weak Dzyaloshinskii–Moriya interaction and next nearest neighbor exchange coupling on the behaviors of conductivities are discussed. A sublattice antiferromagnetic long range ordering has been considered for localized electrons on honeycomb lattice structure. Using Holstein–Primakoff bosonic transformations, the behaviors of spin transport properties have been studied by means of excitation spectrum of mapped bosonic gas. We have found the temperature dependence of static spin conductivity in the field induced gapped spin-polarized phase for various Dzyaloshinskii–Moriya interaction strengths. Furthermore we have studied the frequency dependence of dynamical spin conductivity for various Dzyaloshinskii–Moriya interaction strengths and different next nearest neighbor coupling constants. We find that the height of peak in the temperature dependence of static spin conductivity increases upon increasing the anisotropy parameter. The static spin conductivity is found to be monotonically increasing with anisotropy parameter due to increase of the energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of the spin conductivity for different next nearest neighbor coupling constants.  相似文献   

5.
We have theoretically studied the magnetic structure factors of Heisenberg model on honeycomb lattice in the presence of anisotropic Dzyaloshinskii–Moriya interaction and next nearest neighbor coupling exchange constant. A sublattice antiferromagnetic long range ordering has been considered for localized electrons on honeycomb lattice structure. In particular, the frequency dependence of both longitudinal and transverse dynamical spin susceptibilities has been investigated for various physical parameters in the model Hamiltonian. Using Holstein–Primakoff bosonic transformations, the behavior of magnetic susceptibilities properties has been studied by means of excitation spectrum of mapped bosonic gas. Furthermore we have studied the dependence of static spin susceptibilities on Dzyaloshinskii–Moriya interaction strength for various next nearest neighbor interaction strengths. We have found the dependence of static longitudinal spin structure factor on Dzyaloshinskii–Moriya interaction strength shows a divergence behavior at phase transition point for various next nearest neighbor exchange constants. Also our results show the position of peak in the dynamical transverse spin structure factor at fixed value for Dzyaloshinskii Moriya interaction moves to lower frequency with next nearest neighbor coupling constant.  相似文献   

6.
We consider ferromagnetism in spatially randomly located magnetic moments, as in a diluted magnetic semiconductor, coupled via the carrier-mediated indirect exchange RKKY interaction. We obtain, via Monte Carlo calculations, the magnetic phase diagram as a function of the impurity moment density n(i) and the relative carrier concentration n(c)/n(i). As evidenced by the diverging correlation length and magnetic susceptibility, the boundary between ferromagnetic and nonferromagnetic phases constitutes a line of zero temperature critical points which can be viewed as a magnetic percolation transition. In the dilute limit, we find that bulk ferromagnetism vanishes for n(c)/n(i) >0.1. We also incorporate the local antiferromagnetic direct superexchange interaction between nearest neighbor impurities and examine the impact of a damping factor in the RKKY range function.  相似文献   

7.
Using the Hubbard model in the framework of the tight-binding formulation, we studied the effects of the electron–electron (e–e) interaction on the indirect magnetic exchange coupling between the magnetic impurities embedded in triangular graphene nanoflakes. The results show that the magnitude of the coupling enhances in the presence of the e–e interaction and Rashba spin–orbit interaction (RSOI). The RKKY coupling magnitude depends on the impurity positions in nanoflake and the size of the system, as well.  相似文献   

8.
王丹  熊诗杰 《中国物理快报》2008,25(3):1102-1105
We show that the spatially random distribution of magnetic moments of dopants in diluted magnetic semiconductors can partially localize the itinerant carriers and change the carrier-mediated indirect RKKY interaction. From numerical calculations of the electron states taking into account the interaction with magnetic impurities which are random both in spatial positions and in orientations of magnetic moments, we obtain the electron states and the RKKY interaction as a function of the distance between magnetic dopants L and of the sp - d exchange integral J. With the increase of disorder, the localization of itinerant electrons become stronger and the long-range regular oscillatory behaviour of the RKKY interaction gradually disappears and is replaced by severe fluctuations. The randomness and localization may enhance the RKKY interaction between dopants with short and middle distances and in favour of the ferromagnetism.  相似文献   

9.
Pairwise thermal entanglement in the three-qubit XXX Heisenberg model with next nearest neighbor interaction and a nonuniform magnetic field has been studied. It's found that the next nearest neighbor interaction has a great effect on the entanglement between the next nearest neighbor sites, but has slight effect on the nearest neighbor entanglement (NNE). Applying a magnetic field at the middle site enhances the next nearest neighbor entanglement (NNNE) sharply when there is a small field at the side sites and the next nearest neighbor coupling constant is positive. A staggered magnetic field helps to maintain nearest neighbor entanglement obviously.  相似文献   

10.
We study the thermodynamic properties of two dimensional Heisenberg antiferromagnet on the honeycomb lattice in the presence of anisotropic Dzyaloshinskii-Moriya interaction and next nearest neighbor coupling exchange constant. A sublattice antiferromagnetic long range ordering has been considered for localized electrons on honeycomb lattice structure. In particular, the temperature dependence of specific heat has been investigated for various physical parameters in the model Hamiltonian. Using Holstein-Primakoff bosonic transformations, the behavior of thermodynamic properties has been studied by means of excitation spectrum of mapped bosonic gas. Furthermore we have studied the dependence of specific heat and magnetization on Dzyaloshinskii-Moriya interaction strength for various next nearest neighbor interaction strengths. At low temperatures, the specific heat is found to be monotonically increasing with temperature. We have found the dependence of specific heat on Dzyaloshinskii-Moriya interaction strength shows a monotonic increasing behavior for various next nearest neighbor exchange constants. Also we have studied the temperature dependence of staggered magnetization for different next nearest neighbor coupling constants. Our results show the critical temperature moves to higher amounts with reduction of Dzyaloshinskii-Moriya interaction strength.  相似文献   

11.
Electron paramagnetic resonance (EPR) is used to identify the next nearest neighbour Co2+ pairs coupled by spin–spin interaction in Co‐doped ZnO single crystals grown by the hydrothermal technique. These dimer centers are described by a spin Hamiltonian with exchange coupling terms written as interaction between identical effective spins Seff = 1/2 of the lowest ground state Kramers doublets of the two Co2+ ions. The exchange parameters of weakly ferromagnetically coupled next nearest neighbor Co2+ pairs are estimated. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
郑勇林  卢孟春  郭红霞  包秀丽 《物理学报》2015,64(17):177501-177501
基于交换耦合理论通常使用的近似分析的一般原理, 严格的分析了没有特定假设情况下的磁序范围或有关磁化密度的形式, 及在任何近似下提出一种关于耦合参数的计算方法. 并结合铁磁系统(磁性金属材料Gd, Fe, Ni), 定量的讨论了这种关系的适用范围, 也对自旋波和交换耦合进行了相关分析. 分析表明: 对于近邻磁性原子之间的交换耦合的计算以及在有限波矢量情况下对自旋波谱的计算都得到较为有意义的改进. 提出的交换耦合近似及自旋波谱的关系, 应用于铁磁系统时对近邻原子之间相互作用能给出较好的描述, 或对任何磁体中非完全局域磁化的自旋波谱较大波矢部分给出较合理的描述. 从磁性理论来看, 按照本文模型应用于磁学系统计算得到的结果与实验结果较好的符合.  相似文献   

13.
We study the indirect exchange interaction, named Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling, between localized magnetic impurities in graphene nanoflakes with zig-zag edges in the presence of the Rashba spin-orbit interaction (RSOI). We calculate the isotropic and anisotropic RKKY amplitudes by utilizing the tight-binding (TB) model. The RSOI, as a gate tunable variable, is responsible for changes of the RKKY amplitude. We conclude that there is not any switching of the magnetic order (from ferro- to antiferro-magnetic and vice versa) in such a system through the RSOI. The dependence of the RKKY amplitude on the positions of the magnetic impurities and the size of the system is studied. The symmetry breaking, which can occur due to the Rashba interaction, leads to spatial anisotropy in the RKKY amplitude and manifests as collinear and noncollinear terms. Our results show the possibility of control and manipulation of spin correlations in carbon spin-based nanodevices.  相似文献   

14.
We consider the one-dimensional t - J model, which consists of electrons with spin S on a lattice with nearest neighbor hopping t constrained by the excluded multiple occupancy of the lattice sites and spin-exchange J between neighboring sites. The model is integrable at the supersymmetric point, J = t. Without spoiling the integrability we introduce an Anderson-like impurity of spin S (degenerate Anderson model in the limit), which interacts with the correlated conduction states of the host. The lattice model is defined by the scattering matrices via the Quantum Inverse Scattering Method. We discuss the general form of the interaction Hamiltonian between the impurity and the itinerant electrons on the lattice and explicitly construct it in the continuum limit. The discrete Bethe ansatz equations diagonalizing the host with impurity are derived, and the thermodynamic Bethe ansatz equations are obtained using the string hypothesis for arbitrary band filling as a function of temperature and external magnetic field. The properties of the impurity depend on one coupling parameter related to the Kondo exchange coupling. The impurity can localize up to one itinerant electron and has in general mixed valent properties. Groundstate properties of the impurity, such as the energy, valence, magnetic susceptibility and the specific heat coefficient, are discussed. In the integer valent limit the model reduces to a Coqblin-Schrieffer impurity. Received: 31 December 1997 / Accepted: 17 March 1998  相似文献   

15.
We study the spin singlet superconductivity exhibited in an itinerant Ising model Hamiltonian. This Hamiltonian models the Cu–O layers in highT c oxide superconductors. Electrons are itinerant through nearest neighbor hopping. An Ising term is introduced to describe the antiferromagnetic superexchange interaction between electrons nominally on nearest neighbor Cu sites. We discuss various symmetry states allowed by the model, and give detailed predictions of the superconducting energy gap, specific heat, susceptibility, andT c variation with carrier concentration. Results are compared to experimental data on highT c superconductors and reasonable agreement is obtained.  相似文献   

16.
The effect of hole doping on the exchange coupling of the nearest neighbor (NN) Mn pairs in Zn(1-x)MnxTe is probed by inelastic neutron scattering. The difference in the NN exchange energy DeltaJ1 in the presence and in the absence of the holes is determined. The obtained value of DeltaJ1 is in good agreement with the predictions of the Zener/RKKY model, even on the insulator side of the metal-insulator transition.  相似文献   

17.
Within an analytical approach we study the RKKY interaction mediated by the electron gas, which shows fractional spectral dimensionality. We derive formula for the RKKY exchange integral in a system of nonintegral dimensionality. Also the modifications of magnetic interaction and magnetic moments in metallic overlayers due to the surface/interface effects are considered. Presented at the VIII-th Symposium on Surface Physics, Třešt’ Castle, Czech Republic, June 28 – July 2, 1999.  相似文献   

18.
The Hubbard model on a cube was revisited and extended by both nearest‐neighbor Coulomb correlation W and nearest‐neighbor Heisenberg exchange J. The complete eigensystem was computed exactly for all electron occupancies and all model parameters ranging from minus infinity to plus infinity. For two electrons on the cluster the eigensystem is given in analytical form. For six electrons and infinite on‐site correlation U we determinded the groundstate and the groundstate energy of the pure Hubbard model analytically. For fixed electron numbers we found a multitude of ground state level crossings depending on the various model parameters. Furthermore the groundstates of the pure Hubbard model in dependence on a magnetic field h coupled to the spins are shown for the complete U‐h plane. The critical magnetic field, where the zero spin groundstate breaks down is given for four and six electrons. Suprisingly we found parameter regions, where the ground state spin does not depend monotonously on J in the extended model. For the cubic cluster gas, i.e. an ensemble of clusters coupled to an electron bath, we calculated the density n (μ, T, h) and the thermodynamical density of states from the grand potential. The ground states and the various spin‐spin correlation functions are studied for both attractive and repulsive values of the three interaction constants. We determined the various anomalous degeneration lines, where n (μ, T = 0, h = 0) shows steps higher than one, since in this parameter regions exotic phenomena as phase separation are to expect in extended models. For the cases where these lines end in triple points, i.e. groundstates of three different occupation numbers are degenerated, we give the related parameter values. Regarding the influence of the nn‐exchange and the nn‐Coulomb correlation onto the anomalous degeneration we find both lifting and inducing of degeneracies depending on the parameter values.  相似文献   

19.
刘贵艳  毛竹  周斌 《物理学报》2018,67(2):20301-020301
研究具有次近邻相互作用五量子比特XXZ海森伯自旋链在磁场作用下的热纠缠性质,利用数值计算求出最近邻两量子比特和次近邻两量子比特的共生纠缠度(concurrence),分别记为C_(12)和C_(13).研究结果表明,阻挫参数对配对热纠缠具有重要影响,而且阻挫参数的变化对C_(12)和C_(13)的影响也各不相同;温度、磁场、Dzyaloshinkii-Moriya相互作用以及各向异性参数对配对热纠缠有着不同程度的影响;通过选择适当的模型参数,可以有效地调节和提高五量子比特XXZ海森伯自旋链的配对热纠缠.  相似文献   

20.
Anisotropic versions of the familiar (RKKY) indirect exchange between localised S-state magnetic moments in metals can arise in a number of ways. There are two basic mechanisms, viz. (i) from anisotropic s-d interactions such as dipolar coupling and (ii) in higher orders of perturbation theory with the conduction electron spin-orbit interaction. Applications to particular materials are briefly considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号