首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetrahedra-based nitrides with network structures have emerged as versatile materials with a broad spectrum of properties and applications. Both nitridosilicates and nitridophosphates are well-known examples of such nitrides that upon doping with Eu2+ exhibit intriguing luminescence properties, which makes them attractive for applications. Nitridosilicates and nitridophosphates show manifold structural variability; however, no mixed nitridosilicatephosphates except SiPN3 and SiP2N4NH have been described so far. The compounds AESiP3N7 (AE=Sr, Ba) were synthesized by a high-pressure high-temperature approach using the multianvil technique (8 GPa, 1400–1700 °C) starting from the respective alkaline earth azides and the binary nitrides P3N5 and Si3N4. The latter were activated by NH4F, probably acting as a mineralizing agent. SrSiP3N7 and BaSiP3N7 were obtained as single crystals. They crystallized in the barylite-1O (M=Sr) and barylite-2O structure types (M=Ba), respectively, with P and Si being occupationally disordered. Cation disorder was further supported by solid-state NMR spectroscopy and energy-dispersive X-ray spectroscopy (EDX) mapping of BaSiP3N7 with atomic resolution. Upon doping with Eu2+, both compounds showed blue emission under UV excitation.  相似文献   

2.
The binary germanides M12Ge17 and M4Ge9 (M ? Na, K, Rb, Cs) and the stannides M12Sn17 and M4Sn9 (M ? K, Rb, Cs) were identified by a combination of direct synthesis, thermogravimetric analysis, vibrational spectroscopy, X-ray powder data and single crystal structure analysis. The M12E17 phases contain the cluster anions [E9]4? and [E4]4? in the ratio 1:2, forming a hierarchical structure with the cluster anions at the atomic positions of the hexagonal Laves phase MgZn2. Like the M4E4 phases, the M4Ge9 compounds are hierarchical derivatives of the cubic Cr3Si structure but with [Ge9]4? anions. The thermogravimetric analyses give strong evidence for the existence of at least one more phase with [E9]4? and [E4]4? clusters and of the clathrate phases M6E136 in addition to the well-known M8E442 chlathrates.  相似文献   

3.
Two germanato‐polyoxovanadates with the {V15Ge6O48} cluster core are extended by covalent bonds to four transition metal amine complexes [M(tren)]2+ (M = Co and Zn, tren = tris(2‐aminoethyl)amine). The complexes have bonds to terminal atoms of the Ge2O7 units and such expansion of a germanato‐polyxovanadate was never observed before. The characterization of these compounds revealed the presence of two protonated tren molecules charge balancing the negative charges of the [{M(tren)}4V15Ge6O48(H2O)]4– anion.  相似文献   

4.
A comparative chemical bonding analysis for the germanides La2MGe6 (M=Li, Mg, Al, Zn, Cu, Ag, Pd) and Y2PdGe6 is presented, together with the crystal structure determination for M=Li, Mg, Cu, Ag. The studied compounds adopt the two closely related structure types oS72-Ce2(Ga0.1Ge0.9)7 and mS36-La2AlGe6, containing zigzag chains and corrugated layers of Ge atoms bridged by M species, with La/Y atoms located in the biggest cavities. Chemical bonding was studied by means of the quantum chemical position-space techniques QTAIM (quantum theory of atoms in molecules), ELI-D (electron localizability indicator), and their basin intersections. The new penultimate shell correction (PSC0) method was introduced to adapt the ELI-D valence electron count to that expected from the periodic table of the elements. It plays a decisive role to balance the Ge−La polar-covalent interactions against the Ge−M ones. In spite of covalently bonded Ge partial structures formally obeying the Zintl electron count for M=Mg2+, Zn2+, all the compounds reveal noticeable deviations from the conceptual 8−N picture due to significant polar-covalent interactions of Ge with La and M ≠ Li, Mg atoms. For M=Li, Mg a formulation as a germanolanthanate M[La2Ge6] is appropriate. Moreover, the relative Laplacian of ELI-D was discovered to reveal a chemically useful fine structure of the ELI-D distribution being related to polyatomic bonding features. With the aid of this new tool, a consistent picture of La/Y−M interactions for the title compounds was extracted.  相似文献   

5.
Single crystals of three new strontium nitridogermanates(IV) were grown in sealed niobium ampules from sodium flux. Dark red Sr4[GeN4] crystallizes in space group P21/c with a = 9.7923(2) Å, b = 6.3990(1) Å, c = 11.6924(3) Å and β = 115.966(1)°. Black Sr8Ge2[GeN4] contains Ge4– anions coexisting with [GeIVN4]8– tetrahedra and adopts space group Cc with a = 10.1117(4) Å, b = 17.1073(7) Å, c = 10.0473(4) Å and β = 115.966(1)°. Black Sr17Ge6N14 features the same anions alongside trigonal planar [GeIVN3]5– units. It crystallizes in P1 with a = 7.5392(1) Å, b = 9.7502(2) Å, c = 11.6761(2) Å, α = 103.308(1)°, β = 94.651(1)° and γ = 110.248(1)°.  相似文献   

6.
3d transition metal nitridophosphates MIIP8N14 (MII=Fe, Co, Ni) were prepared by high‐pressure metathesis indicating that this route might give a systematic access to a structurally rich family of M‐P‐N compounds. Their structures, which are stable in air up to at least 1273 K, were determined through powder X‐ray diffraction and consist of highly condensed tetra‐layers of PN4 tetrahedra and MN6 octahedra. Magnetic measurements revealed paramagnetic behavior of CoP8N14 and NiP8N14 down to low temperatures while, FeP8N14 exhibits an antiferromagnetic transition at TN=3.5(1) K. Curie–Weiss fits of the paramagnetic regime indicate that the transition metal cations are in a oxidation state +II, which was corroborated by Mössbauer spectroscopy for FeP8N14. The ligand field exerted by the nitride ions in CoP8N14 and NiP8N14 was determined from UV/Vis/NIR data and is comparable to that of aqua‐ligands and oxophosphates.  相似文献   

7.
3d transition metal nitridophosphates MIIP8N14 (MII=Fe, Co, Ni) were prepared by high‐pressure metathesis indicating that this route might give a systematic access to a structurally rich family of M‐P‐N compounds. Their structures, which are stable in air up to at least 1273 K, were determined through powder X‐ray diffraction and consist of highly condensed tetra‐layers of PN4 tetrahedra and MN6 octahedra. Magnetic measurements revealed paramagnetic behavior of CoP8N14 and NiP8N14 down to low temperatures while, FeP8N14 exhibits an antiferromagnetic transition at TN=3.5(1) K. Curie–Weiss fits of the paramagnetic regime indicate that the transition metal cations are in a oxidation state +II, which was corroborated by Mössbauer spectroscopy for FeP8N14. The ligand field exerted by the nitride ions in CoP8N14 and NiP8N14 was determined from UV/Vis/NIR data and is comparable to that of aqua‐ligands and oxophosphates.  相似文献   

8.
A number of N-alkylnitrobenzoaza-15-crown-5 with the macrocycle N atom conjugated with the benzene ring were obtained. The structural and complexing properties of these compounds were compared with those of model nitrobenzo- and N-(4-nitrophenyl)aza-15-crown-5 using X-ray diffraction, 1H NMR spectroscopy, and DFT calculations. The macrocyclic N atom of benzoazacrown ethers are characterized by a considerable contribution of the sp3-hybridized state and a pronounced pyramidal geometry; the crownlike conformation of the macrocycle is preorganized for cation binding, which facilitates complexation. The stability constants of the complexes of crown ethers with the NH4 +, EtNH3 +, Na+, K+, Ca2+, and Ba2+ ions were determined by 1H NMR titration in MeCN-d3. The most stable complexes were obtained with alkaline-earth metal cations, which is due to the higher charge density at these cations. The characteristics of the complexing ability of N-alkylnitrobenzoaza-15-crown-5 toward alkaline earth metal cations are comparable with analogous characteristics of nitrobenzo-15-crown-5 and are much better than those of N-(4-nitrophenyl)aza-15-crown-5.  相似文献   

9.
Compounds A3+Te6+M33+X25+O14 (A = Na, K; M = Ga, Al, Fe; X = P, As, V) with the Ca3Ga2Ge4O14 structure (sp. gr. P321) were prepared by solid-phase synthesis at 600–850°C in air. The compounds melt incongruently or decompose in the solid state.  相似文献   

10.
Na2Mn2(1 − x)Cd2xFe(PO4)3 (0 ≤ x ≤ 1) phosphates were prepared by solid state reaction and characterized by powder X-ray diffraction, magnetic susceptibility and Mössbauer spectroscopy. The X-ray diffraction patterns indicated the formation of a continuous solid solution which crystallizes in the alluaudite structural type characterized by the general formula X(2)X(1)M(1)M(2)2(PO4)3. The cation distribution, deduced from a structure refinement of the x = 0, 0.5 and 1 compositions, is ordered in the X(2) sites and disordered in the remaining X(1), M(1) and M(2) sites. The magnetic susceptibility study revealed an antiferromagnetic behaviour of the studied compounds. The 57Fe Mössbauer spectroscopy confirmed the structural results and proved the exclusive presence of Fe3+ ions.  相似文献   

11.
This article describes a method used to teach students how X-ray crystallography and infrared spectroscopy analysis can be used to obtain information about the nature and strength of the bonding in the crystalline compounds MIMIII(SO4)2 (with MI = K+, Rb+, Cs+ and MIII = Al3+, Cr3+, Fe3+). These sulfates form an isomorphic series. The influences of specific MIMIII ions on the variation of the a and c parameters and on the position of IR absorption bands are described. Additionally, X-ray crystallography and infrared spectroscopy studies of the double sulfates MIMIII(SO4)2 show students the existence of [SO4-MIII-SO4] layers in the crystallized products; the covalent character of MIII-O attractions, which give cohesion in these layers; the existence of MI layers between [SO4-MIII-SO4] layers, and the electrovalent character of MI-O interactions.  相似文献   

12.
Nitridophosphates exhibit an intriguing structural diversity with different structural motifs, for example, chains, layers or frameworks. In this contribution the novel nitridophosphate Sr3P3N7 with unprecedented dreier double chains is presented. Crystalline powders were synthesized using the ammonothermal method, while single crystals were obtained by a high-pressure multianvil technique. The crystal structure of Sr3P3N7 was solved and refined from single-crystal X-ray diffraction and confirmed by powder X-ray methods. Sr3P3N7 crystallizes in monoclinic space group P2/c. Energy-dispersive X-ray and Fourier-transformed infrared spectroscopy were conducted to confirm the chemical composition, as well as the absence of NHx functionality. The optical band gap was estimated to be 4.4 eV using diffuse reflectance UV/Vis spectroscopy. Upon doping with Eu2+, Sr3P3N7 shows a broad deep-red to infrared emission (λem=681 nm, fwhm≈3402 cm−1) with an internal quantum efficiency of 42 %.  相似文献   

13.
Two unusual, extensive new solid solutions of LiNbO3and LiTaO3with MnO have been prepared, where 4Mn2+replace a combination of 3Li+and a pentavalent cation: Nb5+or Ta5+. The formulas are Li1−xM1−xMn4xO3, 0<x<0.13, forM=Nb and 0<x<0.23 forM=Ta. The solid solutions were characterized by X-ray powder diffraction and density measurements. The manganese oxidation states were determined by X-ray photoelectron spectroscopy.  相似文献   

14.
Three new thiogermanates (enH)4Ge2S6 (1) and [M(en)3]2Ge2S6 (M=Mn (2), Ni (3); en=ethylenediamine) were synthesized using GeO2 and S8 as starting materials in molar ratio of 1:0.5 under solvothermal conditions. These compounds suggest that the dimeric [Ge2S6]4− anion is likely to be the main germanium-containing species in en system and it also might be preferred as counter anions by the transition metal complex cations in crystallization. The cations of [Mn(en)3]2+ and [Ni(en)3]2+ are even better mineralizers than the protonated amine of [enH]+. The crystal systems of [Ge2S6]4− compounds are related to entities of cations and intermolecular reactions between cations and [Ge2S6]4− anions. The compounds remove ethylenediamine and H2S molecules in multi steps when being heated under nitrogen stream.  相似文献   

15.
The nitridosilicate CaLu[Si4N7–2xCxOx] (x≈0.3) was synthesized by carbothermal reduction and nitridation starting from CaH2, Lu2O3, graphite and amorphous Si3N4 at 1550 °C in a radiofrequency furnace. CaLu[Si4N7–2xCxOx] (x≈0.3) crystallizes isotypically to many previously known MIIMIIISi4N7 compounds in the space group P63mc, as was confirmed by Rietveld refinement based on powder X-ray diffraction data. Incorporation of carbon into the crystal structure as a result of the carbothermal synthesis route was confirmed by 13C and 29Si MAS NMR spectroscopy. For the first time in the MIIMIIISi4N7 compound class, complementary EDX measurements suggest that simultaneous incorporation of oxygen compensates for the negative charge excess induced by carbon, resulting in an adjusted sum formula, CaLu[Si4N7–2xCxOx] (x≈0.3). When excited with UV-to-blue light, CaLu[Si4N7–2xCxOx] (x≈0.3) shows an emission maximum in the blue spectral region (λem=484 nm; fwhm=4531 cm−1) upon doping with Ce3+, whereas Eu2+-doped CaLu[Si4N7–2xCxOx] (x≈0.3) exhibits a yellow-green emission (λem=546 nm; fwhm=3999 cm−1).  相似文献   

16.
Eu5Ge3 and EuIrGe2 were prepared from the elements in tantalum tubes, and their crystal structures were determined from single crystal X-ray data. Eu5Ge3 adopts the structure of Cr5B3: I4/mcm, a = 799.0(1)pm, c = 1 536.7(1)pm, Z = 4, wR2 = 0.0421 for 669 F2 values and 16 variables. The structure of Eu5Ge3 contains isolated germanium atoms and germanium atom pairs with a Ge? Ge distance of 256.0 pm. Eu5Ge3 may be described as a Zintl phase with the formulation [5 Eu2+]10+[Ge]4?[Ge2]6?. Magnetic investigations of Eu5Ge3 show Curie-Weiss behaviour above 50 K with a magnetic moment of μexp = 7.6(1) μB which is close to the free ion value of μeff = 7.94 μB for Eu2+. EuIrGe2 is isotypic with CeNiSi2: Cmcm, a = 445.5(2) pm, b = 1 737.4(4) pm, c = 426.6(1) pm, Z = 4, wR2 = 0.0507 for 295 F2 values and 18 variables. The structure of EuIrGe2 is an intergrowth of ThCr2Si2-like slabs with composition EuIr2Ge2 and AlB2-like slabs with composition EuGe2 in an AB stacking sequence. Both slabs are distorted when compared to the symmetry of the prototypes. The Ge? Ge distance of 256.6 pm in the AlB2-like fragment is comparable to that in Eu5Ge3.  相似文献   

17.
Single crystals of the novel ternary compounds EuZn2Si2 and EuZn2Ge2 were grown from pure gallium, indium, or zinc metal used as a flux solvent. Crystal properties were characterized using X-ray single-crystal analyses via Gandolfi and Weissenberg film techniques and by four-circle X-ray single-crystal diffractometry. The new compounds crystallize with ternary derivative structures of BaAl4, i.e., EuZn2Si2 with ThCr2Si2-type (a=0.42607(2) nm, c=1.03956(5) nm, I4/mmm, R1=0.038) and EuZn2Ge2 with CaBe2Ge2-type (a=0.43095(2) nm, c=1.07926(6) nm, P4/nmm, R1=0.067). XAS and magnetic measurements on EuZn2Si2 and EuZn2Ge2 revealed in both compounds the presence of Eu2+ ions carrying large magnetic moments, which order magnetically at low temperatures. The magnetic phase transition occurs at TN=16 and 7.5 K for the silicide and the germanide, respectively. In EuZn2Si2 there occurs a spin reorientation at 13 K and furthermore some canting of antiferromagnetically ordered moments below about 10 K. In EuZn2Ge2 a canted antiferromagnetic structure is formed just at TN.  相似文献   

18.
The four title compounds, namely sodium gallium germanate, NaGaGe2O6, sodium manganese vanadate germanate, NaMnV0.1Ge1.9O6, sodium scandium germanate, NaScGe2O6, and sodium indium germanate, NaInGe2O6, adopt the high‐temperature structure of the pyroxene‐type chain germanates, with monoclinic symmetry and space group C2/c. The lattice parameters, the individual and average bond lengths involving M1, and the distortion parameters scale well with the ionic radius of the M1 cation. NaGaGe2O6 has more distorted M1 sites and more extended tetrahedral chains than NaInGe2O6, in which a high degree of kinking is required to maintain the connection between the octahedral and tetrahedral building units of the pyroxene structure. An exceptional case is NaMnGe2O6, in which the strong Jahn–Teller effect of Mn3+ results in more distorted octahedral sites than expected according to linear extrapolation from the other NaM3+Ge2O6 pyroxenes. In contrast with the literature, minor incorporations of V5+ in the tetrahedral site and a corresponding reduction of Mn3+ to Mn2+ in the octahedral sites in the present sample lower the Jahn–Teller distortion and stabilize the Mn‐bearing pyroxene, even allowing its synthesis at ambient pressure.  相似文献   

19.
The electronic structure and transport properties of In24M8O48 (M = Ge4+, Sn4+, Ti4+, and Zr4+) have been studied by using the full‐potential linearized augmented plane‐wave method and the semiclassical Boltzmann theory, respectively. It is found that the magnitude of powerfactor with respect to relation time follows the order of In24Sn8O48 > In24Zr8O48 > In24Ge8O48 > In24Ti8O48. The largest powerfactor is 2.7 × 1012 W/K2ms for In24Sn8O48 at 60 K, which is nearly thirty times larger than those of conventional n‐type thermoelectric materials. The origin of the different thermoelectric behavior for these compounds is discussed from the electronic structure level. It is found that, at low temperature, the dopant strongly affect the bands near the Fermi level, which consequently leads to their different thermoelectric properties. The electronic configuration and the difference in atomic number between the dopant and the host atom also play an important role on the thermoelectric properties of In24M8O48. Our calculations give a valuable insight on how to enhance the thermoelectric performance of In32O48. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

20.
Summary. New selenidogermanates [Mn(en)3]2Ge2Se6 (en = ethylenediamine) and [Fe(dien)2]2Ge2Se6 (dien= diethylenetriamine) were synthesized by the reaction of germanium dioxide, elemental selenium, and transition metal chlorides in respectively en and dien. Both compounds crystallize in the monoclinic space group P21/n with two formula units in the unit cell, and consist of discrete [Ge2Se6]4− anions with transition metal complex cations as counter ions. The [Ge2Se6]4− anion is formed by two GeSe4 tetrahedra sharing a common edge to form a planar Ge2Se2 four-membered ring. The [Mn(en)3]2+ and [Ni(dien)2]2+ complex cations are in distorted octahedral geometry. In both selenidogermanates extensive N–H···Se hydrogen bonding contacts lead to 3-dimensional network structures. The band gaps of 2.36 and 2.25 eV were derived from optical absorption spectra. Thermogravimetric analysis shows that the first compound decomposes in two steps under the nitrogen stream, while the second exhibits a one-step decomposition process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号