首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Different trends of echo time dependent gradient recalled echo MRI signals in different brain regions have been attributed to signal compartments in image voxels. It remains unclear how variations in gradient recalled echo MRI signals change as a function of MRI field strength, and how data processing may impact signal compartment parameters. We used two popular quantitative susceptibility mapping methods of processing raw phase images (Laplacian and path-based unwrapping with V-SHARP) and expressed values in the form of induced frequency shifts (in Hz) in six specific brain regions at 3T and 7T. We found the frequency shift curves to vary with echo time, and a good overlap between 3T and 7T mean frequency shift curves was present. However, the amount of variation across participants was greater at 3T, and we were able to obtain better compartment model fits of the signal at 7T. We also found the temporal trends in the signal and compartment frequency shifts to change with the method used to process images. The inter-participant averaged trends were consistent between 3T and 7T for each quantitative susceptibility pipeline. However, signal compartment frequency shifts generated using different pipelines may not be comparable.  相似文献   

3.
In magnetic resonance imaging (MRI), a non-zero offset in the receiver baseline signal during acquisition results in a bright spot or a line artifact in the center of the image known as a direct current (DC) artifact. Several methods have been suggested in the past for the removal or correction of DC artifacts in MR images, however, these methods cannot be applied directly when a specific phase-cycling technique is used in the imaging sequence. In this work, we proposed a new, simple technique that enables correction of DC artifacts for any arbitrary phase-cycling imaging sequences. The technique is composed of phase unification, DC offset estimation and correction, and phase restoration. The feasibility of the proposed method was demonstrated via phantom and in vivo experiments with a multiple phase-cycling balanced steady-state free precession (bSSFP) imaging sequence. Results showed successful removal of the DC artifacts in images acquired using bSSFP with phase-cycling angles of 0°, 90°, 180°, and 270°, indicating potential feasibility of the proposed method to any imaging sequence with arbitrary phase-cycling angles.  相似文献   

4.
多次扫描相干平均是提高磁共振图像信噪比的常用方法,但如果在多次扫描过程中病人发生自主或不自主的运动,使得图像中的组织发生位移,简单相干平均图像会导致图像模糊.本文受非局域均值算法的启发,提出了一种基于局部位移校正的相干平均方法.该算法通过比较多次采集的图像中组织结构的局部相似性,找出图像间的局部位移,利用该信息修正位移后进行加权平均,从而达到提高图像信噪比的目的.我们用模型及真实的肝脏弥散数据进行了实验.实验结果表明,对于不同次采样间存在运动的磁共振图像,该算法可有效地提高信噪比并保持结构边缘;其结果优于简单的相干平均,去噪效果也优于经典的非局域均值算法.  相似文献   

5.
梯度回波序列是磁共振成像中常用的脉冲序列,然而梯度回波对主磁场波动非常敏感,呼吸等生理运动引起的信号波动会导致图像伪影.该文报道了采用导航回波技术获取呼吸运动导致的局部磁场波动,用以矫正图像回波中随时间变化的相位波动,并将该技术应用于三维多回波梯度回波成像和T2*定量图研究.研究结果显示:矫正前,相位波动幅度随回波时间增长而增大,模图和T2*定量图在相位编码方向有明显伪影,并且男女呼吸伪影水平有显著性差异;矫正后,相位波动幅度大幅下降,图像伪影水平有显著性下降.  相似文献   

6.
The amplitudes of gradient-echoes produced using static field gradients are sensitive to diffusion of tissue water during the echo evolution time. Gradient-echoes have been used to produce MR images in which image intensity is proportional to the self-diffusion coefficient of water. However, such measurements are subject to error due to the presence of background magnetic field gradients caused by variations in local magnetic susceptibility. These local gradients add to the applied gradients. The use of radiofrequency (RF) gradients to produce gradient-echoes may avoid this problem. The RF magnetic field is orthogonal to the offset field produced by local magnetic susceptibility gradients. Thus, the effect of the local gradients on RF gradient-echo amplitude is small if the RF field is strong enough to minimize resonance offset effects. The effects of susceptibility gradients can be further reduced by storing magnetization longitudinally during the echo evolution period. A water phantom was used to evaluate the effects of background gradients on the amplitudes of RF gradient-echoes. A surface coil was used to produce an RF gradient of between 1.3 and 1.6 gauss/cm. Gradient-echoes were detected with and without a 0.16 gauss/cm static magnetic field gradient applied along the same direction as the RF gradient. The background static field gradient had no significant effect on the decay of RF gradient-echo amplitude as a function of echo evolution time. In contrast, the effect of the background gradient on echoes produced using a 1.6 gauss/cm static field gradient is calculated to be significant. This analysis suggests that RF gradient-echoes can produce MR images in which signal intensity is a function of the self-diffusion coefficient of water, but is not significantly affected by background gradients.  相似文献   

7.
Use of magnetic resonance imaging (MRI) in individuals with orthopedic implants is limited because of the large distortions caused by metallic components. As a possible solution for this problem, we suggest the use of single-point imaging (SPI) methods, which are immune to the susceptibility artifacts observed with conventional MRI methods. A further advantage of SPI, based on the fact that signal encoding is achieved in ultra-short times (as short as tens of microseconds), is that they enable the direct visualization of the polymeric elements of the implants, allowing the detection of possible implant failures. We present in vitro SPI images of polymeric sockets of two hip prostheses together with artifact-free images of gelatin phantoms containing their respective metallic stems. These data underscore the great potential of the SPI technique for obtaining artifact-free images of individuals with large metal implants.  相似文献   

8.
Single-shot spatiotemporally encoded (SPEN) MRI is a novel fast imaging method capable of retaining the time efficiency of single-shot echo planar imaging (EPI) but with distortion artifacts significantly reduced. Akin to EPI, the phase inconsistencies between mismatched even and odd echoes also result in the so-called Nyquist ghosts. However, the characteristic of the SPEN signals provides the possibility of obtaining ghost-free images directly from even and odd echoes respectively, without acquiring additional reference scans. In this paper, a theoretical analysis of the Nyquist ghosts manifested in single-shot SPEN MRI is presented, a one-dimensional correction scheme is put forward capable of maintaining definition of image features without blurring when the phase inconsistency along SPEN encoding direction is negligible, and a technique is introduced for convenient and robust correction of data from multi-channel receiver coils. The effectiveness of the proposed processing pipeline is validated by a series of experiments conducted on simulation data, in vivo rats and healthy human brains. The robustness of the method is further verified by implementing distortion correction on ghost corrected data.  相似文献   

9.
Diffusion magnetic resonance imaging (MRI) was performed with a high-resolution segmented echo-planar imaging technique, which provided images with substantially less susceptibility artifacts than images obtained with single-shot echo-planar imaging (EPI). Diffusion imaging performed with any multishot pulse sequence is inherently sensitive to motion artifacts and in order to reduce motion artifacts, the presented method utilizes navigator echo phase corrections, performed after a one-dimensional Fourier transform along the frequency-encoding direction. Navigator echo phases were fitted to a straight line prior to phase correction to avoid errors from internal motion. In vivo imaging was performed using electro cardiographic (ECG) triggering. Apparent diffusion coefficient (ADC) maps were calculated on a pixel-by-pixel basis using up to seven diffusion sensitivities, ranging from b = 0 to 1129 x 10(6) s/m(2).  相似文献   

10.
A number of ‘Dixon’ techniques based on fast spin echo (FSE) sequence have been proposed and successfully used in many branches of medicine. Some require only one scan, but most of them need multiple scans and long scan times. This article describes a new fast triple-spin-echo Dixon (FTSED) technique suitable for ultra-high field MRI, in which three specific time shifts are introduced in the echo train; thus, three images with defined water-fat phase-differences (0, π, 2π) are encoded in the phase of the acquired images without extreme restrictions upon the echo duration. The water and fat images are then calculated by iterative least-squares estimation method. The sequence was successfully implemented at a 9.4 T ultra-high field MRI system and tested on a phantom and a rat.  相似文献   

11.
Sodium is a key element in a living organism. The increase of its concentration is an indicator of many pathological conditions. 23Na magnetic resonance imaging (MRI) is a quantitative method that allows to determine the sodium content in tissues and organs in vivo. This method has not yet entered clinical practice widely, but it has already been used as a clinical research tool to investigate diseases such as brain tumors, breast cancer, stroke, multiple sclerosis, hypertension, diabetes, ischemic heart disease, osteoarthritis. The active development of the 23Na MRI is promoted by the growth of available magnetic fields, the expansion of hardware capabilities, and the development of pulse sequences with ultra-short echo time.  相似文献   

12.
A simple phase error correction technique used for field map estimation with a generally available dual-echo gradient-echo (GRE) sequence is presented. Magnetic field inhomogeneity maps estimated using two separate GRE volume acquisitions at different echo times are prone to dynamic motion errors between acquisitions. By using the dual-echo sequence, the data are collected during two back-to-back readout gradients in opposite polarity after a single radio frequency pulse, and interecho motion artifacts and alignment errors in field map estimation can be factored out. Residual phase error from the asymmetric readout pulses is modeled as an affine term in the readout direction. Results from phantom and human data suggest that the first-order phase correction term stays constant over time and, hence, can be applied to different data acquired with the same protocol over time. The zero-order phase correction term may change with time and is estimated empirically for different scans.  相似文献   

13.
Quantifying T1 relaxation times is a challenge because inhomogeneities of the B1 field have to be corrected to obtain proper values. It is a particular challenge in tissues with short T2 values, for which conventional MRI techniques do not provide sufficient signal. Recently, a B1-field correction technique called AFI (Actual Flip angle Imaging) has been introduced that can be combined with UTE (ultra-short echo-time) sequences, which have much shorter echo times compared to conventional MRI techniques, allowing quantification of signal in short T2 tissues. A disadvantage of AFI is that it requires very long relaxation delays between repetitions to minimize the influence of imperfect spoiling of transverse magnetization on signal behavior. In this work, we propose a novel spoiling scheme for the AFI sequence that efficiently provides accurate B1 correction maps with strongly reduced acquisition time. We validated the method with both phantom and preliminary in vivo results.  相似文献   

14.
Susceptibility differences are common causes for artifacts in magnetic resonance (MR); therefore, it is important to choose phantom materials in a way that these artifacts are kept at a minimum. In this study, a previously proposed MR imaging (MRI) method [Beuf O, Briguet A, Lissac M, Davis R. Magnetic resonance imaging for the determination of magnetic susceptibility of materials. J Magn Reson 1996; Series B(112):111-118] was improved to facilitate sensitive in-house measurements of different phantom materials so that such artifacts can more easily be minimized. Using standard MRI protocols and distilled water as reference, we measured magnetic volume susceptibility differences with a clinical MR system. Two imaging techniques, echo planar imaging (EPI) and spin echo, were compared using liquid samples whose susceptibilities were verified by MR spectroscopy. The EPI sequence has a very narrow bandwidth in the phase-encoding direction, which gives an increased sensitivity to magnetic field inhomogeneities. All MRI measurements were evaluated in two ways: (1) manual image analysis and (2) model fitting. The narrow bandwidth of the EPI made it possible to detect very small susceptibility differences (equivalent susceptibility difference, Deltachi(e)> or =0.02 ppm), and even plastics could be measured. Model fitting yielded high accuracy and high sensitivity and was less sensitive to other image artifacts as compared with manual image analysis.  相似文献   

15.
In this paper, we present the correction of the geometric distortion measured in the clinical magnetic resonance imaging (MRI) systems reported in the preceding paper (Part I) using a 3D method based on the phantom-mapped geometric distortion data. This method allows the correction to be made on phantom images acquired without or with the vendor correction applied. With the vendor's 2D correction applied, the method corrects for both the "residual" geometric distortion still present in the plane in which the correction method was applied (the axial plane) and the uncorrected geometric distortion along the axis normal to the plane. The evaluation of the effectiveness of the correction using this new method was carried out through analyzing the residual geometric distortion in the corrected phantom images. The results show that the new method can restore the distorted images in 3D nearly to perfection. For all the MRI systems investigated, the mean absolute deviations in the positions of the control points (along x-, y- and z-axes) measured on the corrected phantom images were all less than 0.2 mm. The maximum absolute deviations were all below approximately 0.8 mm. As expected, the correction of the phantom images acquired with the vendor's correction applied in the axial plane performed equally well. Both the geometric distortion still present in the axial plane after applying the vendor's correction and the uncorrected distortion along the z-axis have all been "restored."  相似文献   

16.
The present work explores the possibility of localizing veins with magnetic resonance venography using susceptibility weighted imaging. It also seeks new approaches, directed by the spatial specificity of activated brain regions, that have sufficient precision for practical use in functional MRI studies. A 3D flow compensated multiple gradient echo sequence, featuring optimized T2* weighting within a reasonable time of acquisition (11 min) and a small voxel size (0.5x0.5x1 mm3), was used to acquire MR images at 3 T. Post-processing consisted of homodyne filtering, linear phase scaling and magnitude masking prior to minimum intensity projection (mIP). The multiple echo approach provided a satisfactory (48+/-7%) increase in signal-to-noise ratio with respect to conventional methods. Specific features of the blood oxygenation level-dependent phase effect were simulated and used for designing and exploring different phase masking methods in relation to vessel morphology and MRI voxel geometry. As with simulations, the best results were obtained with an asymmetric triangular phase masking, featuring an improved venographic contrast without any increase in the full-width at half-maximum. The multiple echo approach provided satisfactory vessel localization capacity by using asymmetric triangular phase masking and a 4-mm-thick mIP. The venographic contrast obtained enabled the detection of vessels with diameter down to approximately 500 microm, suggesting the applicability of the proposed method as an additional technique in fMRI studies.  相似文献   

17.
In magnetic resonance electrical impedance tomography (MREIT), currents are injected into an object, the resulting magnetic flux density is measured using MRI, and the conductivity distribution reconstructed using these MRI data. The relatively long acquisition times of conventional MREIT methods limit the signal averaging rate and are susceptible to motion artifacts. In this study, we reconstructed the conductivity distribution of an agarose gel phantom from data acquired in under a minute using a single-shot, spin echo, echo planar imaging (SS-SEPI) pulse sequence. The results demonstrate that SS-SEPI can be used for MREIT data acquisition.  相似文献   

18.
To improve vessel contrast in high-resolution susceptibility-based brain venography, an automatic phase contrast enhancing procedure is proposed, based on a new phase mask filter suitable for maximizing contrast of venous MR signals. The effectiveness of the new approach was assessed both on digital phantoms and on acquired MR human brain images, and then compared with venographic results of phase masking methods in recent literature. The digital phantom consisted of a simulated MR dataset with given signal-to-noise ratios (SNRs), while real human data were collected by scanning healthy volunteers with a 3.0-T MR system and a 3D gradient echo pulse sequence. The new phase mask (NM) was more effective than the conventional mask (CM) both on the digital phantoms and on the acquired MR images. A quantitative comparison based on phantom venograms indicates how this phase enhancement can lead to a significant increase in the contrast-to-noise ratio (CNR) for all considered phase values as well as for all vessel sizes of clinical interest. Likewise, the in vivo brain venograms reveal a better depiction of the smallest venous vessels and the enhancement of many details undetectable in conventional venograms.  相似文献   

19.
磁共振成像(MRI)中,相位图像包含丰富的组织磁化率变化信息,获取相位图像不需要额外的扫描时间.组织中的顺磁性物质会影响组织磁化率差异,从而导致局部磁场不均匀.对组织内顺磁性物质的定量有利于许多脑血管疾病和神经系统疾病的诊断,但利用局部相位信息重建组织磁化率分布是一个不适定逆问题,目前仍然有许多问题亟待解决.该文着重介绍定量磁化率成像(QSM)的原理、重建方法及其在MRI 中的应用.  相似文献   

20.
A magnetic resonance imaging (MRI) method is described that allows interleaved measurements of transverse (R(2)(*) and R(2)) and longitudinal (R(1)) relaxation rates of tissue water in conjunction with spin labeling. The image-contrasts are intrinsically blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) weighted, but each contrast is made quantitative by two echo time (TE) and inversion recovery time (TIR) acquisitions with gradient echo (GE) and spin echo (SE) weighted echo-planar imaging (EPI). The EPI data were acquired at 7 Tesla with nominal spatial resolution of 430 x 430 x 1000 microm(3) in rat brain in vivo. The method is termed as blood oxygenation level dependent exponential decays adjusted for flow attenuated inversion recovery (BOLDED AFFAIR) and allows acquisition of R(2)(*), R(2), and CBF maps in an interleaved manner within approximately 12 minute. The basic theory of the method, associated experimental/systematic errors, and temporal restrictions are discussed. The method is validated by comparison of multi-modal maps obtained by BOLDED AFFAIR (i.e., two TE and TIR values with GE and SE sequences) and conventional approach (i.e., multiple TE and TIR values with GE and SE sequences) during varied levels of whole brain activity. Preliminary functional data from a rat forepaw stimulation model demonstrate the feasibility of this method for functional MRI (fMRI) studies. It is expected that with appropriate precautions this method in conjunction with contrast agent-based MRI has great potential for quantitative fMRI studies of mammalian cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号