首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ill-posed inverse problem in quantitative susceptibility mapping(QSM) is usually solved using a regularization and optimization solver, which is time consuming considering the three-dimensional volume data. However, in clinical diagnosis, it is necessary to reconstruct a susceptibility map efficiently with an appropriate method. Here, a modified QSM reconstruction method called weighted total variation using split Bregman(WTVSB) is proposed. It reconstructs the susceptibility map with fast computational speed and effective artifact suppression by incorporating noise-suppressed data weighting with split Bregman iteration. The noise-suppressed data weighting is determined using the Laplacian of the calculated local field, which can prevent the noise and errors in field maps from spreading into the susceptibility inversion.The split Bregman iteration accelerates the solution of the L_1-regularized reconstruction model by utilizing a preconditioned conjugate gradient solver. In an experiment, the proposed reconstruction method is compared with truncated k-space division(TKD), morphology enabled dipole inversion(MEDI), total variation using the split Bregman(TVSB) method for numerical simulation, phantom and in vivo human brain data evaluated by root mean square error and mean structure similarity. Experimental results demonstrate that our proposed method can achieve better balance between accuracy and efficiency of QSM reconstruction than conventional methods, and thus facilitating clinical applications of QSM.  相似文献   

2.
定量磁化率成像(QSM)利用一般成像技术舍弃的相位信息得到局部磁场变化特性,通过复杂的场到源反演计算,可直接得到定量的磁化率图,它广泛应用于测量血氧饱和度、脑部微出血、铁沉积、组织钙化等方面.然而,梯度磁场中流动会引起相位错误,并且产生显著的流动伪影,最终得到错误的QSM图像.为了矫正流动的影响,该文在3 T磁共振系统上实现了三维多回波流动补偿梯度回波序列,并用该序列采集流动水模和志愿者颅脑数据.流动水模和颅脑数据均显示,流动补偿能够明显矫正相位错误,消除流动伪影.颅脑横断位QSM结果证明,流动补偿序列可以消除血液流动引起的QSM的错误,提高QSM的准确性.  相似文献   

3.
Fast gradient echo sequences, such as echo planer imaging (EPI) and spiral imaging, are vulnerable to artifacts resulting from B(0) inhomogeneities. A major contribution to these artifacts is the susceptibility variation across the head, which is most severe in regions adjacent to air-tissue interfaces, such as the mouth, nasal sinuses, ears and the cortex. Susceptibility artifacts can cause geometrical distortions in the image as well as loss of signal due to T(2)* dephasing. The extent of these artifacts increases with the main field, thus compromising the signal-to-noise ratio (SNR) benefit gained in higher fields. In the current work, inhomogeneity caused by susceptibility variations at the external boundary of the human body has been corrected by surrounding the organs with a liquid without hydrogen atoms and whose susceptibility is similar to that of the imaged organ. EPI experiments were conducted on head-sized phantom, human brain, hand and legs. This method causes minimal patient inconvenience and no interference with any function of the scanner, thus yielding a simple and efficient solution for the correction of B(0) variation.  相似文献   

4.
Susceptibility differences are common causes for artifacts in magnetic resonance (MR); therefore, it is important to choose phantom materials in a way that these artifacts are kept at a minimum. In this study, a previously proposed MR imaging (MRI) method [Beuf O, Briguet A, Lissac M, Davis R. Magnetic resonance imaging for the determination of magnetic susceptibility of materials. J Magn Reson 1996; Series B(112):111-118] was improved to facilitate sensitive in-house measurements of different phantom materials so that such artifacts can more easily be minimized. Using standard MRI protocols and distilled water as reference, we measured magnetic volume susceptibility differences with a clinical MR system. Two imaging techniques, echo planar imaging (EPI) and spin echo, were compared using liquid samples whose susceptibilities were verified by MR spectroscopy. The EPI sequence has a very narrow bandwidth in the phase-encoding direction, which gives an increased sensitivity to magnetic field inhomogeneities. All MRI measurements were evaluated in two ways: (1) manual image analysis and (2) model fitting. The narrow bandwidth of the EPI made it possible to detect very small susceptibility differences (equivalent susceptibility difference, Deltachi(e)> or =0.02 ppm), and even plastics could be measured. Model fitting yielded high accuracy and high sensitivity and was less sensitive to other image artifacts as compared with manual image analysis.  相似文献   

5.
Diffusion magnetic resonance imaging (MRI) was performed with a high-resolution segmented echo-planar imaging technique, which provided images with substantially less susceptibility artifacts than images obtained with single-shot echo-planar imaging (EPI). Diffusion imaging performed with any multishot pulse sequence is inherently sensitive to motion artifacts and in order to reduce motion artifacts, the presented method utilizes navigator echo phase corrections, performed after a one-dimensional Fourier transform along the frequency-encoding direction. Navigator echo phases were fitted to a straight line prior to phase correction to avoid errors from internal motion. In vivo imaging was performed using electro cardiographic (ECG) triggering. Apparent diffusion coefficient (ADC) maps were calculated on a pixel-by-pixel basis using up to seven diffusion sensitivities, ranging from b = 0 to 1129 x 10(6) s/m(2).  相似文献   

6.
The habenulae consist of a pair of small nuclei which bridge the limbic forebrain and midbrain monoaminergic centers. They are implicated in major depressive disorders due to abnormal phasic response when provoked by a conditioned stimulus. The lateral habenula (Lhb) is believed to be involved in dopamine metabolism and is now a target for deep brain stimulation, a treatment which has shown promising anti-depression effects. We imaged the habenulae with susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM) in order to localize the lateral habenula. Fifty-six healthy controls were recruited for this study. For the quantitative assessment, we traced the structure to compute volume from magnitude images and mean susceptibility bilaterally for the habenula on QSM. Thresholding methods were used to delineate the Lhb habenula on QSM. SWI, true SWI (tSWI), and QSM data were subjectively reviewed for increased Lhb contrast. SWI, QSM, and tSWI showed bilateral signal changes in the posterior location of the habenulae relative to the anterior location, which may indicate increased putative iron content within the Lhb. This signal behavior was shown in 41/44 (93%) subjects. In summary, it is possible to localize the lateral component of the habenula using SWI and QSM at 3 T.  相似文献   

7.
Ye JC  Millane RP  Webb KJ  Downar TJ 《Optics letters》1998,23(18):1423-1425
The effects of the approximation DD=0 that is often used in frequency-resolved optical diffusion imaging are examined. It is shown that this approximation can affect the performance of integral-equation-based approaches to optical diffusion imaging, such as the Born iterative method and the distorted Born iterative method. The approximation introduces errors into the calculation of data used in simulations, which can lead to misleading evaluations of reconstruction algorithms. Numerical calculations show the magnitude of these effects and the appearance of artifacts in reconstructed images when conventional inversion algorithms are applied to more accurately calculated data.  相似文献   

8.
ObjectivesAceruloplasminemia (ACP) is a rare autosomal recessive disorder characterized by intracranial and visceral iron overload. With R2*-based imaging or quantitative susceptibility mapping (QSM), it is feasible to measure iron in the brain quantitatively, although to date this has not yet been done for patients with ACP. The aim of this study was to provide quantitative iron measurements for each affected brain region in an ACP patient with the potential to do so in all future ACP patients. This may shed light on the link between brain iron metabolism and the territories affected by ceruloplasmin function.MethodsWe imaged a patient with ACP using a 3T magnetic resonance imaging scanner with a fifteen-channel head coil. We manually demarcated gray matter and white matter on the Strategically Acquired Gradient Echo (STAGE) images, and calculated values for susceptibility and R2* in these regions. Correlation analysis was performed between the R2* values and the susceptibility values.ResultsBesides the usual territories affected in ACP, we also discovered that the mammillary bodies and the lateral habenulae had significant increases in iron, and the hippocampus was severely affected both in terms of iron content and abnormal tissue signal. We also noted that the iron in the cortical gray matter appeared to be deposited in the inner layers. Moreover, several pathways between the superior colliculus and the pulvinar thalamus, between the caudate and putamen anteriorly and between the caudate and pulvinar thalamus posteriorly were also evident. Finally, R2* correlated strongly with the QSM data (R2 = 0.67, t = 6.78, p < 0.001).ConclusionQSM and R2* have proven to be sensitive and quantitative means by which to measure iron content in the brain. Our findings included several newly noted affected brain regions of iron overload and provided some new aspects of iron metabolism in ACP that may be further applicable to other pathologic conditions. Furthermore, our study may pave the way for assessing efficacy of iron chelation therapy in these patients and for other common iron related neurodegenerative disorders.  相似文献   

9.
PURPOSE: This study aimed to investigate the use of anatomically tailored hexagonal sampling for scan-time and error reduction in MRI. MATERIALS AND METHODS: Anatomically tailored hexagonal MRI (ANTHEM), a method that combines hexagonal sampling with specific symmetry in anatomical geometry, is proposed. By using hexagonal sampling, aliasing artifacts are moved to regions where, due to the nature of the anatomy, aliasing is inconsequential. This can be used to either reduce scan time while maintaining spatial resolution or reduce residual errors in speedup techniques like UNFOLD and k-t BLAST/SENSE, which undersample k-space and unwrap fold-over artifacts during reconstruction. Computer simulations as well as phantom and volunteer studies were used to validate the theory. A simplified reconstruction algorithm for hexagonally sampled and subsampled k-space data was also used. RESULTS: A reduction in sampling density of 13.4% and 25% in each hexagonally sampled dimension was achieved for spherical and conical geometries without aliasing or reduction in spatial resolution. Optimal subsampling schemes that can be utilized by UNFOLD and k-t BLAST/SENSE were derived using hexagonal subsampling, which resulted in maximal, isotropic dispersal of the aliases. In combination with UNFOLD, ANTHEM was shown to move residual aliasing artifacts to the corners of the field of view, yielding reduced artifacts in CINE reconstructions. CONCLUSIONS: ANTHEM was successful in reducing acquisition time in conventional MRI and in reducing errors in UNFOLD imaging.  相似文献   

10.
A high-speed proton spectroscopic imaging method with high spatial resolution was used for obtaining water, fat, and chemical shift artifact-free images on a 1.5 T MR scanner. The technique is based on a fast radiofrequency (RF) spoiled gradient-echo sequence. The chemical shift information is encoded by incrementing the echo time in a series of image records. Suppression of water or fat signals is not used. The technique does not require a highly homogeneous magnetic field. Spectroscopic images of a human volunteer were compared with corresponding conventional images obtained using the short inversion time inversion recovery (STIR) and the selective partial inversion recovery (SPIR) methods. The results demonstrate that it is possible to produce images entirely free from chemical shift artifacts using only a few chemical shift encoding steps. The technique also produces pure water and fat images which are significantly better than those produced by using the conventional methods STIR and selective partial inversion recovery. The described method appears to be promising for routine clinical applications because it can be fully automated.  相似文献   

11.

Purpose

To investigate whether image quality can be improved using liquid perfluorocarbon pads (Sat Pad) and clarify the optimal fat-suppression method among chemical shift selective (CHESS), water excitation (WEX), and short TI inversion recovery (STIR) methods in diffusion-weighted imaging (DWI) of the head and neck using 3-T magnetic resonance imaging. Correlations between results of visual inspection and quantitative analysis were also examined.

Material and Methods

This study was approved by our Institutional Review Board and informed consent was waived. DWI was performed on 25 subjects with/without Sat Pad and using three fat-suppression methods (6 patterns). Image quality was evaluated visually (4-point scales and lesion-depiction capability) and by quantitative analysis (signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)). Two-way repeated-measures analysis of variance (ANOVA) was used to detect significant differences in scores of visual evaluation, SNR, and CNR.

Results

Mean visual evaluation scores were significantly higher with Sat Pad using STIR than without Sat Pad for all fat-suppression methods (P < 0.05). DWI with Sat Pad using STIR tended to be useful for depicting lesions. DWI using STIR showed reduced W-SNR (W: whole area of depicted structure) and CNR (between semispinalis capitis muscle and subcutaneous fat) due to fewer artifacts and uniform fat suppression.

Conclusion

Combining Sat Pad with STIR provides good image quality for visual inspections. When numerous artifacts are present and fat suppression is insufficient, higher SNR and CNR do not always provide good diagnostic image quality.  相似文献   

12.
液体折射率的一种新型测量方法   总被引:2,自引:0,他引:2       下载免费PDF全文
利用液体薄膜的遮光效应原理,建立了一种新的测量液体折射率的方法和装置。选择了3种常见液体:蒸馏水 、无水乙醇 和1,2-丙二醇。利用新建的装置对其折射率进行了测量。实际测量过程中,对实验形成的图样进行了2种测量分析:一种是利用读数显微镜直接测量分析实验结果;一种是利用CCD拍摄记录实验结果,并利用计算机对拍摄结果进行了智能化处理分析。分析了实验误差,实现了实时、全自动化测量。测量结果均与理论值吻合。该方法操作简便、设备简单、重复性好、准确度高。  相似文献   

13.
The aim of this study was to visualize multiple-shot fast spin echo (FSE) images using a periodically rotated overlapping parallel line with enhanced reconstruction (PROPELLER) technique. An iterative decomposition of water and fat with echo asymmetry and a least squares estimation (IDEAL) technique were also performed to reduce the image distortion or susceptibility artifact depending on the difference in magnetic susceptibility to the surrounding tissues caused by metal insertion. The utility of this technique was examined quantitatively. A ferromagnetic image was generated from all the metals, but the IDEAL technique caused less image distortion than the PROPELLER technique. The 3-point IDEAL technique, which used the difference in the signal phase of fat and water, required more time for the examination and image reconstruction than the PROPELLER technique, which was based on a rotating blade in k-space. On the other hand, the IDEAL technique was more useful for reducing the susceptibility artifacts. The use of a proper technique in clinical trials based on these results is expected to provide better clinical information for imaging diagnoses.  相似文献   

14.
Rationale and objectivesThe goal of this study was to estimate venous blood oxygen saturation (SvO2) in the superior sagittal sinus (SSS) in fetal brains with ventriculomegaly (VM) using quantitative susceptibility mapping (QSM).Materials and methodsA radiofrequency spoiled gradient echo sequence was used to evaluate data on 19 fetuses with VM (gestational age(GA): median = 29.9 weeks (range 23 to 37.3 weeks)) and 20 healthy fetuses (GA: median = 30.9 (range 22.7 to 38.7 weeks)) at 1.5 T. Susceptibility weighted images encompassing the entire fetal brain were acquired within 1 min. An iterative, geometry constraint-based thresholded k-space division algorithm was used for generating QSM data of the fetal brain. The venous oxygen saturation was calculated using the magnetic susceptibility of the SSS obtained from the QSM data. Mixed-model analysis of variance and interobserver variability assessment were used to analyze the results.ResultsThe median SvO2 values in the entire VM cohort as well as for second and third trimester fetuses (with interquartile range) were: 67.8% (63.2%, 73.6%), 73.1% (69.1%, 77.3%) and 63.8% (59.4%, 68.1%), respectively. The corresponding median SvO2 value in the healthy control group was: 65.3% (58.3%, 68.2%), 67.5% (61.7%, 69.2%) and 60.8% (53.6%, 68.2%), respectively. However, the difference of SvO2 between VM and control groups was not significant at the p = 0.05 level (p = 0.076). The SvO2 was found decreasing significantly with GA in the healthy control group (p < 0.05).ConclusionsWe report for the first time the estimation of cerebral SvO2 in human fetuses with VM using QSM. This measure of oxygen saturation might be beneficial in assessing and monitoring the metabolic status of the fetus in various clinical conditions.  相似文献   

15.
PurposeTo evaluate the accuracy of susceptibility estimated from the principles of echo shifting with a train of observations (PRESTO) sequence using a 1.5 T MRI system, we conducted experiments on the human brain using the PRESTO sequence and compared our results with the susceptibility obtained from spoiled gradient-recalled echo (GRE) sequence with flow compensation using quantitative susceptibility mapping (QSM) reconstruction.Materials and methodsExperiments on the human brain were conducted on 12 healthy volunteers (27 ± 4 years) using PRESTO and spoiled GRE sequences on a 1.5 T scanner. The PRESTO sequence is an echo-shifted gradient echo sequence that allows high susceptibility sensitivity and rapid acquisition because of TE > TR compared with the spoiled GRE sequence. QSM analysis was performed on the obtained phase images using the iLSQR method. Estimated susceptibility maps were used for region of interest analyses and estimation of line profiles through iron-rich tissue and major vessels.ResultsOur results demonstrated that susceptibility maps were accurately estimated, without error, by QSM analysis of PRESTO and spoiled GRE sequences. Acquisition time in the PRESTO sequence was reduced by 43% compared with that in the spoiled GRE sequence. Differences did exist between susceptibility maps in PRESTO and spoiled GRE sequences for visualization and quantitative values of major blood vessels and the areas around themConclusionThe PRESTO sequence enables correct estimation of tissue susceptibility with rapid acquisition and may be useful for QSM analysis of clinical use of 1.5 T scanners.  相似文献   

16.
Echo planar imaging (EPI) is a fast and non-invasive magnetic resonance imaging technique that supports data acquisition at high spatial and temporal resolutions. However, susceptibility artifacts, which cause the misalignment to the underlying structural image, are unavoidable distortions in EPI. Traditional susceptibility artifact correction (SAC) methods estimate the displacement field by optimizing an objective function that involves one or more pairs of reversed phase-encoding (PE) images. The estimated displacement field is then used to unwarp the distorted images and produce the corrected images. Since this conventional approach is time-consuming, we propose an end-to-end deep learning technique, named S-Net, to correct the susceptibility artifacts the reversed-PE image pair. The proposed S-Net consists of two components: (i) a convolutional neural network to map a reversed-PE image pair to the displacement field; and (ii) a spatial transform unit to unwarp the input images and produce the corrected images. The S-Net is trained using a set of reversed-PE image pairs and an unsupervised loss function, without ground-truth data. For a new image pair of reversed-PE images, the displacement field and corrected images are obtained simultaneously by evaluating the trained S-Net directly. Evaluations on three different datasets demonstrate that S-Net can correct the susceptibility artifacts in the reversed-PE images. Compared with two state-of-the-art SAC methods (TOPUP and TISAC), the proposed S-Net runs significantly faster: 20 times faster than TISAC and 369 times faster than TOPUP, while achieving a similar correction accuracy. Consequently, S-Net accelerates the medical image processing pipelines and makes the real-time correction for MRI scanners feasible. Our proposed technique also opens up a new direction in learning-based SAC.  相似文献   

17.
PurposeTo propose the combined modified-Dixon and PROPELLER sequence with low refocusing flip angle (RFA) and investigate whether this sequence can acquire clinical contrast-enhanced (CE), fat-suppressed T1-weighted (T1W) images of the head and neck.MethodsThe optimal RFA for T1W imaging was investigated in the brain of a healthy volunteer. The motion artifacts, water–fat separation error, contrast ratio (CR), and comprehensive quality were evaluated through comparison with a standard Cartesian modified-Dixon sequence in 50 patients. Two radiologists independently scored motion artifacts and water–fat separation error using a 4-point scale (1, unacceptable; 4, excellent) and comprehensive quality using a 5-point scale (1, substantially inferior; 5, substantially superior). The CR between CE lesions and non-CE muscle was calculated.ResultsThe optimal RFA of 40° was determined. In the motion artifact assessment, ratings of 3 or 4 points were assigned to 83% (observer-1, 42/50; observer-2, 41/50) and 99% (50/50; 49/50) of cases for the standard and proposed sequences, respectively (p < 0.001; p < 0.001). For the water–fat separation error assessment, ratings of 3 or 4 points were assigned to 100% (50/50; 50/50) and 97% (48/50; 49/50) of cases, respectively (p < 0.001; p = 0.02). In comprehensive evaluation, the proposed sequence was equal, slightly superior, or substantially superior to the standard sequence in 85% (39/50; 46/50). The CR was significantly higher with the proposed sequence [2.27 (1.99–2.97) vs. 2.08 (1.88–2.42), p < 0.001].ConclusionThe proposed sequence acquired stable fat-suppressed CE T1W images without motion artifacts and yielded superior overall image quality compared with the standard sequence.  相似文献   

18.
尤伟  汪源源 《声学学报》2009,34(5):430-436
为抑制超声彩色血流成像(CFI)中杂波信号对血流速度估计的影响,提出一种基于投影寻踪(PP)的杂波抑制方法。根据回波信号的时域特性,采用投影寻踪法提取主元以降低主元对非血流区域的高强度杂波的敏感度;然后在特征向量空间去除估计得到的杂波成分,从而获得血流信号。将本方法用于计算机仿真信号和人体实测信号。结果表明:与传统的高通滤波器法相比,本方法能更好地保持流速剖面的完整性和血流轮廓;与特征向量法相比,在近似的流速完整度下本方法在非血流区域产生的误差较少,血管内外能量比高出特征向量法约5dB,能够有效地提高彩色血流成像的质量。   相似文献   

19.
To clarify the temperature dependence of susceptibility estimated by quantitative susceptibility mapping (QSM) analysis, we investigated the relationship between temperature and susceptibility using a cylinder phantom with varying temperatures. Six solutions with various concentrations of superparamagnetic iron oxide (SPIO) nanoparticles were employed. These tubes were placed in a cylinder phantom and surrounded with water. The temperature of the circulated water was adjusted to change the temperature in the cylinder phantom from 25.8 °C to 42.5 °C. The cylinder phantom was scanned via a three-dimensional multiple spoiled gradient-echo sequence for R2* and QSM analyses with varying temperatures. The relationships between temperature, susceptibility, and R2* values were determined. Moreover, the temperature coefficients of susceptibility (χ-Tc) and (R2*-Tc) were calculated at each concentration and the linearities in these indices against each SPIO concentration were validated. Significant inverse correlations were found between temperature, susceptibility, and R2* values at each SPIO concentration due to the decrease in paramagnetic iron susceptibility that occurred with increasing temperature based on Curie's law. Moreover, although there were significant correlations between the susceptibility and R2* values at any temperature, the slopes of the regression lines grew in height with greater temperatures. The percentage of difference per Celsius degree in susceptibility in any SPIO concentration was lower than the corresponding finding among the R2* results. There were strong linearities between the SPIO concentration, χ-Tc (r = −0.994; p < 0.001), and R2*-Tc (r = −0.998; p < 0.001). The χ-Tc and R2*-Tc outcomes in a particular voxel varied considerably with the iron contents. Although there was an inverse correlation noted between temperature and susceptibility, the susceptibility analysis showed smaller temperature dependence relative to the R2* analysis. QSM analysis might be a more suitable option for magnetic resonance-based iron quantification in comparison with R2* relaxometry.  相似文献   

20.
庄泽宇  廉国选  王小民 《声学学报》2021,46(6):1153-1163
给出了一种基于一步相移法的水浸超声检测快速频域算法,以适用于液浸式相控阵成像。通过在阵列信号频域乘以相移因子,将阵列虚拟延拓至水浸工件表面,再进行单介质频域成像。相比时域延时叠加算法,节省了计算界面折射点的用时。对于垂直入射平面波检测,提出一种网格匹配的方法,通过调整傅里叶变换的点数,使阵列信号频域和图像频域的采样网格相重合,有效地减少了频域插值误差和伪像,进一步降低了运算次数.实验结果表明,网格匹配频域算法的运算次数仅为时域平面波算法的1/60,为水浸式超声实时检测提供了一种可行方案。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号