首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lithium‐ion batteries (LIBs) are being used to power the commercial electric vehicles (EVs). However, the charge/discharge rate and life of current LIBs still cannot satisfy the further development of EVs. Furthermore, the poor low‐temperature performance of LIBs limits their application in cold climates and high altitude areas. Herein, a simple prelithiation method is developed to fabricate a new LIB. In this strategy, a Li3V2(PO4)3 cathode and a pristine hard carbon anode are used to form a primary cell, and the initial Li+ extraction from Li3V2(PO4)3 is used to prelithiate the hard carbon. Then, the self‐formed Li2V2(PO4)3 cathode and prelithiated hard carbon anode are used to form a 4 V LIB. The LIB exhibits a maximum energy density of 208.3 Wh kg−1, a maximum power density of 8291 W kg−1 and a long life of 2000 cycles. When operated at −40 °C, the LIB can keep 67 % capacity of room temperature, which is much better than conventional LIBs.  相似文献   

2.
Compared to the traditional transition metal layered double hydroxides, transition metal layered carbonate double hydroxides (TMC-LDHs) possess superior electrochemical performance in theory. But TMC-LDHs have not received its deserved attention, especially for application in the energy storage field. In this work, a flower-like TMC-LDH (Ni0.75Co0.25(CO3)0.125(OH)2, NCCO) material was successfully prepared by hydrothermal method, which exhibits a high specific capacity of 306.8 mAh g−1 (0.52 mAh cm−2) at 0.5 A g−1 with capacity retention of 70.5 % after 2000 cycles. The solid-state hybrid supercapacitor device NCCO//PVA/KOH//IHPC based on the prepared NCCO material and an interconnected hierarchical porous carbon (IHPC) delivers a high specific energy of 50.96 Wh kg−1 at a specific power of 1.06 kW kg−1, and a high specific energy of 36.39 Wh kg−1 still can be delivered at a high specific power of 10.49 kW kg−1. More than 181.2 % of initial specific capacity is retained after 12000 cycles. The specific energy, energy retention under large specific power, and the cycle stability of the assembled device are better than most of the solid-state hybrid supercapacitors that have been reported. These results demonstrate the promising prospect of the TMC-LDH material in the practical application in advanced solid-state supercapacitors.  相似文献   

3.
For the first time, hierarchically porous carbon materials with a sandwich‐like structure are synthesized through a facile and efficient tri‐template approach. The hierarchically porous microstructures consist of abundant macropores and numerous micropores embedded into the crosslinked mesoporous walls. As a result, the obtained carbon material with a unique sandwich‐like structure has a relatively high specific surface (1235 m2 g?1), large pore volume (1.30 cm3 g?1), and appropriate pore size distribution. These merits lead to a comparably high specific capacitance of 274.8 F g?1 at 0.2 A g?1 and satisfying rate performance (87.7 % retention from 1 to 20 A g?1). More importantly, the symmetric supercapacitor with two identical as‐prepared carbon samples shows a superior energy density of 18.47 Wh kg?1 at a power density of 179.9 W kg?1. The asymmetric supercapacitor based on as‐obtained carbon sample and its composite with manganese dioxide (MnO2) can reach up to an energy density of 25.93 Wh kg?1 at a power density of 199.9 W kg?1. Therefore, these unique carbon material open a promising prospect for future development and utilization in the field of energy storage.  相似文献   

4.
The rechargeable aqueous metal‐ion battery (RAMB) has attracted considerable attention due to its safety, low costs, and environmental friendliness. Yet the poor‐performance electrode materials lead to a low feasibility of practical application. A hybrid aqueous battery (HAB) built from electrode materials with selective cation channels could increase the electrode applicability and thus enlarge the application of RAMB. Herein, we construct a high‐voltage K–Na HAB based on K2FeFe(CN)6 cathode and carbon‐coated NaTi2(PO4)3 (NTP/C) anode. Due to the unique cation selectivity of both materials and ultrafast ion conduction of NTP/C, the hybrid battery delivers a high capacity of 160 mAh g?1 at a 0.5 C rate. Considerable capacity retention of 94.3 % is also obtained after 1000 cycles at even 60 C rate. Meanwhile, high energy density of 69.6 Wh kg?1 based on the total mass of active electrode materials is obtained, which is comparable and even superior to that of the lead acid, Ni/Cd, and Ni/MH batteries.  相似文献   

5.
In this study, we demonstrate that an Mn-doped ultrathin Ni-MOF nanosheet array on nickel foam (Mn0.1-Ni-MOF/NF) serves as a highly capacitive and stable supercapacitor positive electrode. The Mn0.1-Ni-MOF/NF shows an areal capacity of 6.48 C cm−2 (specific capacity C: 1178 C g−1) at 2 mA cm−2 in 6.0 m KOH, outperforming most reported MOF-based materials. More importantly, it possesses excellent cycle stability to maintain 80.6 % capacity after 5000 cycles. An asymmetric supercapacitor device utilizing Mn0.1-Ni-MOF/NF as the positive electrode and activated carbon as the negative electrode attains a high energy density of 39.6 Wh kg−1 at 143.8 Wkg−1 power density with a capacitance retention of 83.6 % after 5000 cycles.  相似文献   

6.
Here, flower-like manganese oxide with enriched oxygen vacancies were reported for high performance supercapacitors. The moderate oxygen-vacancy were achieved by controlling annealing atmosphere. Benefiting from improving the conductivity and the density of active sites, MnOx−Ar sample as an electrode material has remarkable specific capacity (339 mAh g−1 at 0.5 A g−1), extraordinary rate capability (90 % capacity retention at 1 A g−1), and good cycling property (90 % capacity retention at 1 A g−1 after 5000 cycles). Additionally, the asymmetric supercapacitor (ASC) was assembled which used the MnOx−Ar sample as cathode and Kochen Black (KB) as anode, which displayed a remarkable energy density (16 Wh kg−1) at a large power density (7593 W kg−1). These results, on the one hand, further expand the application of MnO2-based materials, and on the other hand, offer a new perspective for the oxygen non-stoichiometry in material electrochemistry.  相似文献   

7.
Rational designing and constructing multiphase hybrid electrode materials is an effective method to compensate for the performance defects of the single component. Based on this strategy, Cu2Se hexagonal nanosheets@Co3Se4 nanospheres mixed structures have been fabricated by a facile two-step hydrothermal method. Under the synergistic effect of the high ionic conductivity of Cu2Se and the remarkable cycling stability of Co3Se4, Cu2Se@Co3Se4 can exhibit outstanding electrochemical performance as a novel electrode material. The as-prepared Cu2Se@Co3Se4 electrode displays high specific capacitance of 1005 F g−1 at 1 A g−1 with enhanced rate capability (56 % capacitance retention at 10 A g−1), and ultralong lifespan (94.2 % after 10 000 cycles at 20 A g−1). An asymmetric supercapacitor is assembled applying the Cu2Se@Co3Se4 as anode and graphene as cathode, which delivers a wide work potential window of 1.6 V, high energy density (30.9 Wh kg−1 at 0.74 kW kg−1), high power density (21.0 Wh kg−1 at 7.50 kW kg−1), and excellent cycling stability (85.8 % after 10 000 cycles at 10 A g−1).  相似文献   

8.
《化学:亚洲杂志》2017,12(16):2127-2133
In this work, β‐Co(OH)2 nanosheets are explored as efficient pseudocapacitive materials for the fabrication of 1.6 V class high‐energy supercapacitors in asymmetric fashion. The as‐synthesized β‐Co(OH)2 nanosheets displayed an excellent electrochemical performance owing to their unique structure, morphology, and reversible reaction kinetics (fast faradic reaction) in both the three‐electrode and asymmetric configuration (with activated carbon, AC). For example, in the three‐electrode set‐up, β‐Co(OH)2 exhibits a high specific capacitance of ∼675 F g−1 at a scan rate of 1 mV s−1. In the asymmetric supercapacitor, the β‐Co(OH)2∥AC cell delivers a maximum energy density of 37.3 Wh kg−1 at a power density of 800 W kg−1. Even at harsh conditions (8 kW kg−1), an energy density of 15.64 Wh kg−1 is registered for the β‐Co(OH)2∥AC assembly. Such an impressive performance of β‐Co(OH)2 nanosheets in the asymmetric configuration reveals the emergence of pseudocapacitive electrodes towards the fabrication of high‐energy electrochemical charge storage systems.  相似文献   

9.
We have synthesized and characterized perovskite‐type SrCo0.9Nb0.1O3−δ (SCN) as a novel anion‐intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm−3 (and gravimetric capacitance of ca. 773.6 F g−1) at a current density of 0.5 A g−1 while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg−1 with robust long‐term stability.  相似文献   

10.
We demonstrate a facile efficient way to fabricate activated carbon nanosheets (ACNSs) consisting of hierarchical porous carbon materials. Simply heating banana leaves with K2CO3 produce ACNSs having a unique combination of macro-, meso- and micropores with a high specific surface area of ∼1459 m2 g−1. The effects of different electrolytes on the electrochemical supercapacitor performance and stability of the ACNSs are tested using a two-electrode system. The specific capacitance (Csp) values are 55, 114, and 190 F g−1 in aqueous 0.5 M sodium sulfate, organic 1 M tetraethylammonium tetrafluoroborate in acetonitrile, and pure ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) electrolytes, respectively. The ACNSs also shows the largest potential window of 3.0 V, the highest specific energy (59 Wh kg−1) and specific power (750 W kg−1) in [BMIM][PF6]. A mini-prototype device is prepared to demonstrate the practicality of the ACNSs.  相似文献   

11.
Tungsten oxide/graphene hybrid materials are attractive semiconductors for energy-related applications. Herein, we report an asymmetric supercapacitor (ASC, HRG//m-WO3 ASC), fabricated from monoclinic tungsten oxide (m-WO3) nanoplates as a negative electrode and highly reduced graphene oxide (HRG) as a positive electrode material. The supercapacitor performance of the prepared electrodes was evaluated in an aqueous electrolyte (1 m H2SO4) using three- and two-electrode systems. The HRG//m-WO3 ASC exhibits a maximum specific capacitance of 389 F g−1 at a current density of 0.5 A g−1, with an associated high energy density of 93 Wh kg−1 at a power density of 500 W kg−1 in a wide 1.6 V operating potential window. In addition, the HRG//m-WO3 ASC displays long-term cycling stability, maintaining 92 % of the original specific capacitance after 5000 galvanostatic charge–discharge cycles. The m-WO3 nanoplates were prepared hydrothermally while HRG was synthesized by a modified Hummers method.  相似文献   

12.
《Electroanalysis》2017,29(5):1286-1293
A unipolar pulse electrodeposition method was employed to controllably synthesize nanosheet type NiCo LDH. The effect of concentration rate of Ni(NO3)2/Co(NO3)2 preparation solution on crystalline structure, morphology and supercapacitive performance was investigated systematically. Experimental found that the morphology and composition of NiCo LDH was highly depend on the Ni2+/Co2+ molar ratios of preparation solution; and the obtained Ni0.76Co0.24 LDH materials showed small nanosheet size and uniform distribution on carbon fiber electrode. Ni0.76Co0.24 LDH electrode was evaluated for supercapacitor application, which revealed a high specific capacitances of 2189.8 and 1908.8 F g−1 at the current density of 1 and 30 A g−1 respectively and a good cycle stability, retaining 70.3 % of the initial capacitance after 20000 charge and discharge cycles at 50 A g−1. Moreover, the Ni0.76Co0.24 LDH electrode exhibits a high energy density of 76 Wh Kg−1 at a power density of 250 W Kg−1 and a high power density of 7500 W Kg−1 at energy density of 66 Wh Kg−1. The as‐prepared Ni0.76Co0.24 LDH as positive electrode for asymmetric supercapacitor exhibits excellent energy density of 4.1 Wh Kg‐1 at a power density of 4000 W Kg‐1  相似文献   

13.
Zinc–cobalt double-metal sulfides (ZCS) as Faradic electrode materials with high energy density have great potential for supercapacitors, but their poor transfer efficiency for electrons and ions hinders their electrochemical response. Herein, ZnCo2(CO3)1.5(OH)3@ZCS microflower hybrid arrays consisting of thin nanolayer petals were anchored on three-dimensional graphene (ZnCo2(CO3)1.5(OH)3@ZCS/3DG) by a simple hydrothermal method and additional ion-exchange process. A ZnCo2(CO3)1.5(OH)3@ZCS/3DG electrode delivered high capacitance (2228 F g−1 at 1 A g−1) and long cycling life (85.7 % retention after 17 000 cycles), which are ascribed to the multicomponent structural design. The 3DG conductive substrate improves the electron-transfer dynamics of the electrode material. Meanwhile, the microflowers consisting of thin nanolayer petals could not only provide many active sites for ions to improve the capacitance, but also alleviate the volume expansion to ensure the structural stability. Furthermore, an all-solid-state asymmetric supercapacitor based on a ZnCo2(CO3)1.5(OH)3@ZCS/3DG electrode achieved a high energy density of 27 W h kg−1 at 528.3 W kg−1 and exhibits exceptional cyclic stability for 23 000 cycles. Its ability to light a blue LED for 9 min verified the feasibility of its application for energy storage devices.  相似文献   

14.
Carbon-based symmetric supercapacitors (SCs) are known for their high power density and long cyclability, making them an ideal candidate for power sources in new-generation electronic devices. To boost their electrochemical performances, deriving activated carbon doped with heteroatoms such as N, O, and S are highly desirable for increasing the specific capacitance. In this regard, activated carbon (AC) self-doped with heteroatoms is directly derived from bio-waste (lima-bean shell) using different KOH activation processes. The heteroatom-enriched AC synthesized using a pretreated carbon-to-KOH ratio of 1:2 (ONS@AC-2) shows excellent surface morphology with a large surface area of 1508 m2 g−1. As an SC electrode material, the presence of heteroatoms (N and S) reduces the interfacial charge-transfer resistance and increases the ion-accessible surface area, which inherently provides additional pseudocapacitance. The ONS@AC-2 electrode attains a maximum specific capacitance (Csp) of 342 F g−1 at a specific current of 1 Ag−1 in 1 m NaClO4 electrolyte at the wide potential window of 1.8 V. Moreover, as symmetric SCs the ONS@AC-2 electrode delivers a maximum specific capacitance (Csc) of 191 F g−1 with a maximum specific energy of 21.48 Wh kg−1 and high specific power of 14 000 W kg−1 and excellent retention of its initial capacitance (98 %) even after 10000 charge/discharge cycles. In addition, a flexible supercapacitor fabricated utilizing ONS@AC-2 electrodes and a LiCl/polyvinyl alcohol (PVA)-based polymer electrolyte shows a maximum Csc of 119 F g−1 with considerable specific energy and power.  相似文献   

15.
Three-dimensional (3D) heterostructured molybdenum disulfide (MoS2) is used as base materials for aniline monomer in situ polymerization on its surface. It is found that the aniline addition has a remarkable effect on the energy storage of the final compounds due to the improvement of the conductivity and structure stability combined with the synergistic effect between the two types of species. The optimal compound of PANI@MoS2-150 not only shows a high capacitance value of 801.4 F ⋅ g−1 at a current density of 0.5 A ⋅ g−1 but also provides a high retention rate of 77.4 % after 10,000 cycles. The capacitance fading may be due to the increase of the internal resistance analyzed by EIS. Furthermore, a flexible symmetric supercapacitor based on PANI@MoS2-150 has also been fabricated and the specific capacitance reaches 105 F ⋅ g−1 at a current density of 1 A ⋅ g−1. Impressively, the capacitance retention is larger than 100 % undergoing 10,000 cycles. Besides, the highest energy density of 21 Wh ⋅ kg−1 was obtained. Additionally, the fabricated symmetric supercapacitor demonstrates excellent flexibility.  相似文献   

16.
Aqueous Zn batteries are promising energy-storage devices. However, their lifespan is limited by irreversible Zn anodes owing to water decomposition and Zn dendrite growth. Here, we separate aqueous electrolyte from Zn anode by coating a thin MOF layer on anode and filling the pores of MOF with hydrophobic Zn(TFSI)2-tris(2,2,2-trifluoroethyl)phosphate (TFEP) organic electrolyte that is immiscible with aqueous Zn(TFSI)2–H2O bulk electrolyte. The MOF encapsulated Zn(TFSI)2-TFEP forms a ZnF2-Zn3(PO4)2 solid electrolyte interphase (SEI) preventing Zn dendrite and water decomposition. The Zn(TFSI)2-TFEP@MOF electrolyte protected Zn anode enables a Zn||Ti cell to achieve a high average Coulombic efficiency of 99.1 % for 350 cycles. The highly reversible Zn anode brings a high energy density of 210 Wh kg−1 (of cathode and anode mass) and a low capacity decay rate of 0.0047 % per cycle over 600 cycles in a Zn||MnO2 full cell with a low capacity ratio of Zn:MnO2 at 2:1.  相似文献   

17.
Sluggish storage kinetics and insufficient performance are the major challenges that restrict the transition metal dichalcogenides (TMDs) applied for zinc ion storage, especially at the extreme temperature conditions. Herein, a multiscale interface structure-integrated modulation concept was presented, to unlock the omnidirectional storage kinetics-enhanced porous VSe2−xn H2O host. Theory research indicated that the co-modulation of H2O intercalation and selenium vacancy enables enhancing the interfacial zinc ion capture ability and decreasing the zinc ion diffusion barrier. Moreover, an interfacial adsorption-intercalation pseudocapacitive storage mechanism was uncovered. Such cathode displayed remarkable storage performance at the wide temperature range (−40–60 °C) in aqueous and solid electrolytes. In particular, it can retain a high specific capacity of 173 mAh g−1 after 5000 cycles at 10 A g−1, as well as a high energy density of 290 Wh kg−1 and a power density of 15.8 kW kg−1 at room temperature. Unexpectedly, a remarkably energy density of 465 Wh kg−1 and power density of 21.26 kW kg−1 at 60 °C also can be achieved, as well as 258 Wh kg−1 and 10.8 kW kg−1 at −20 °C. This work realizes a conceptual breakthrough for extending the interfacial storage limit of layered TMDs to construct all-climate high-performance Zn-ion batteries.  相似文献   

18.
Carbonaceous materials are promising anodes for practical potassium-ion batteries, but fail to meet the requirements for durability and high capacities at low potentials. Herein, we constructed a durable carbon anode for high-energy-density K-ion full cells by a preferential pyrolysis strategy. Utilizing S and N volatilization from a π–π stacked supermolecule, the preferential pyrolysis process introduces low-potential active sites of sp2 hybridized carbon and carbon vacancies, endowing a low-potential “vacancy-adsorption/intercalation” mechanism. The as-prepared carbon anode exhibits a high capacity of 384.2 mAh g−1 (90 % capacity locates below 1 V vs. K/K+), which contributes to a high energy density of 163 Wh kg−1 of K-ion full battery. Moreover, abundant vacancies of carbon alleviate volume variation, boosting the cycling stability over 14 000 cycles (8400 h). Our work provides a new synthesis approach for durable carbon anodes of K-ion full cells with high energy densities.  相似文献   

19.
Multivalent batteries show promising prospects for next-generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)4] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high-power density of ∼∼3000 W kg−1 and a high-energy density of ∼∼300 Wh kg−1, respectively. Moreover, the combination of the PTPAn cathode with a calcium-tin (Ca−Sn) alloy anode could enable a long battery-life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual-ion electrochemical concept demonstrates a new feasible pathway towards high-performance divalent ion batteries.  相似文献   

20.
Design of hollow nanostructure and controllable phase of mixed metal oxides for improving performance in supercapacitor applications is highly desirable. Here we demonstrate the rational design and synthesis of Mn3−xFexO4 hollow nanostructures for supercapacitor applications. Owing to high porosity and the specific surface area that provides more active sites for electrochemical reactions, the electrochemical performance of Mn3−xFexO4 hollow nanostructure substantially enhanced comparing with pristine Mn3O4. Particularly, in 1.0 M KOH electrolyte, Mn0.16Fe2.84O4 with a typical diameter of 20 nm exhibits excellent specific capacitance of 2675, 2320, 1662, 987 F g−1 at current densities of 1, 2, 5, 10 A g−1, respectively, which is significantly superior to those of other transition metal oxides. Besides, an asymmetric supercapacitor is assembled by using Mn0.16Fe2.84O4 and activated carbon as a positive and a negative electrode, respectively. Electrochemical results indicate a high energy density of 42 Wh kg−1 at a power density of 0.75 kW kg−1, which makes this hollow nanostructure a highly promising electrode for achieving high-performance next-generation supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号