首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract

In this paper, a Crank–Nicolson finite difference/finite element method is considered to obtain the numerical solution for a time fractional Sobolev equation. Firstly, the classical finite element method is presented. Stability and error estimation for the fully discrete scheme are rigorously established. However, the amount of calculation and computing time are too large due to many degrees of freedom of classical finite element scheme and nonlocality of fractional differential operator. And then the modified reduced-order finite element scheme with low dimensions and sufficiently high accuracy, which is based on proper orthogonal decomposition technique, is provided. Stability and convergence for the reduced-order scheme are also studied. At last, numerical examples show that the results of numerical computation are consistent with previous theoretical conclusions.  相似文献   

2.
In this article we study the stability for all positive time of the Crank–Nicolson scheme for the two‐dimensional Navier–Stokes equations. More precisely, we consider the Crank–Nicolson time discretization together with a general spatial discretization, and with the aid of the discrete Gronwall lemma and of the discrete uniform Gronwall lemma we prove that the numerical scheme is stable, provided a CFL‐type condition is satisfied. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

3.
In this work we propose and analyze a fully discrete modified Crank–Nicolson finite element (CNFE) method with quadrature for solving semilinear second‐order hyperbolic initial‐boundary value problems. We prove optimal‐order convergence in both time and space for the quadrature‐modified CNFE scheme that does not require nonlinear algebraic solvers. Finally, we demonstrate numerically the order of convergence of our scheme for some test problems. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

4.
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation.  相似文献   

5.
In this article, a fully discrete Galerkin scheme based on a nonlinear Crank–Nicolson method to approximate the solution of the DGRLW equation is constructed. Some a priori bounds are proved as well as error estimates. Then, a linearized modification scheme by an extrapolation method is discussed. The two schemes are time second order convergence. The last part is devoted to some numerical results. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

6.
The aim of this article is to establish the convergence and error bounds for the fully discrete solutions of a class of nonlinear equations of reaction–diffusion nonlocal type with moving boundaries, using a linearized Crank–Nicolson–Galerkin finite element method with polynomial approximations of any degree. A coordinate transformation which fixes the boundaries is used. Some numerical tests to compare our Matlab code with some existing moving finite element methods are investigated. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1515–1533, 2015  相似文献   

7.
We prove existence and numerical stability of numerical solutions of three fully discrete interior penalty discontinuous Galerkin methods for solving nonlinear parabolic equations. Under some appropriate regularity conditions, we give the l2(H1) and l(L2) error estimates of the fully discrete symmetric interior penalty discontinuous Galerkin–scheme with the implicit θ ‐schemes in time, which include backward Euler and Crank–Nicolson finite difference approximations. Our estimates are optimal with respect to the mesh size h. The theoretical results are confirmed by some numerical experiments. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

8.
In this paper, we investigate the decay properties of the unconstrained one dimensional suspension bridge model. With only partial damping acting on one or on both equations and with boundary dampings, we prove that the first order energy is decaying exponentially, our method of proof is based on the energy method to build the appropriate Lyapunov functional. Moreover, we develop a numerical algorithm which is based on the finite element method to approximate the spatial variable and the Crank–Nicolson type of symmetric difference scheme to discretize the time derivative, and also a Picard type iteration process for solving the system of nonlinear equations obtained by discretization. At the end, we present some numerical experiments to illustrate our theoretical results.  相似文献   

9.

In this paper, we present and analyze an energy-conserving and linearly implicit scheme for solving the nonlinear wave equations. Optimal error estimates in time and superconvergent error estimates in space are established without certain time-step restrictions. The key is to estimate directly the solution bounds in the H2-norm for both the nonlinear wave equation and the corresponding fully discrete scheme, while the previous investigations rely on the temporal-spatial error splitting approach. Numerical examples are presented to confirm energy-conserving properties, unconditional convergence and optimal error estimates, respectively, of the proposed fully discrete schemes.

  相似文献   

10.
In this paper, we consider the Crank‐Nicolson extrapolation scheme for the 2D/3D unsteady natural convection problem. Our numerical scheme includes the implicit Crank‐Nicolson scheme for linear terms and the recursive linear method for nonlinear terms. Standard Galerkin finite element method is used to approximate the spatial discretization. Stability and optimal error estimates are provided for the numerical solutions. Furthermore, a fully discrete two‐grid Crank‐Nicolson extrapolation scheme is developed, the corresponding stability and convergence results are derived for the approximate solutions. Comparison from aspects of the theoretical results and computational efficiency, the two‐grid Crank‐Nicolson extrapolation scheme has the same order as the one grid method for velocity and temperature in H1‐norm and for pressure in L2‐norm. However, the two‐grid scheme involves much less work than one grid method. Finally, some numerical examples are provided to verify the established theoretical results and illustrate the performances of the developed numerical schemes.  相似文献   

11.
In this paper, we propose a structure-preserving numerical scheme for the size-modified Poisson-Nernst-Planck-Cahn-Hilliard (SPNPCH) equations derived from the free energy including electrostatic energies, entropies, steric energies, and Cahn-Hilliard mixtures. Based on the Jordan-Kinderlehrer-Otto (JKO) framework and the Benamou-Brenier formula of quadratic Wasserstein distance, the SPNPCH equations are transformed into a constrained optimization problem. By exploiting the convexity of the objective function, we can prove the existence and uniqueness of the numerical solution to the optimization problem. Mass conservation and unconditional energy-dissipation are preserved automatically by this scheme. Furthermore, by making use of the singularity of the entropy term which keeps the concentration from approaching zero, we can ensure the positivity of concentration. To solve the optimization problem, we apply the quasi-Newton method, which can ensure the positivity of concentration in the iterative process. Numerical tests are performed to confirm the anticipated accuracy and the desired physical properties of the developed scheme. Finally, the proposed scheme can also be applied to study the influence of ionic sizes and gradient energy coefficients on ion distribution.  相似文献   

12.
This work deals with the efficient numerical solution of a class of nonlinear time-dependent reaction-diffusion equations. Via the method of lines approach, we first perform the spatial discretization of the original problem by applying a mimetic finite difference scheme. The system of ordinary differential equations arising from that process is then integrated in time with a linearly implicit fractional step method. For that purpose, we locally decompose the discrete nonlinear diffusion operator using suitable Taylor expansions and a domain decomposition splitting technique. The totally discrete scheme considers implicit time integrations for the linear terms while explicitly handling the nonlinear ones. As a result, the original problem is reduced to the solution of several linear systems per time step which can be trivially decomposed into a set of uncoupled parallelizable linear subsystems. The convergence of the proposed methods is illustrated by numerical experiments.  相似文献   

13.
In this paper, we investigate the finite volume method (FVM) for a distributed-order space-fractional advection–diffusion (AD) equation. The mid-point quadrature rule is used to approximate the distributed-order equation by a multi-term fractional model. Next, the transformed multi-term fractional equation is solved by discretizing in space by the finite volume method and in time using the Crank–Nicolson scheme. We use a novel technique to deal with the convection term, by which the Riesz fractional derivative of order 0 < γ < 1 is transformed into a fractional integral form. An important contribution of our work is the use of nodal basis function to derive the discrete form of our model. The unique solvability of the scheme is also discussed and we prove that the Crank–Nicolson scheme is unconditionally stable and convergent with second-order accuracy. Finally, we give some examples to show the effectiveness of the numerical method.  相似文献   

14.
This survey enfolds rigorous analysis of the defect‐correction finite element (FE) method for the time‐dependent conduction‐convection problem which based on the Crank‐Nicolson scheme. The method consists of two steps: solve a nonlinear problem with an added artificial viscosity term on a FE grid and correct the solutions on the same grid using a linearized defect‐correction technique. The stability and optimal error estimate of the fully discrete scheme are derived. As a consequence, the effectiveness of the method to deal with high Reynolds number is illustrated in several numerical experiments. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 681–703, 2017  相似文献   

15.
In this work we construct and analyze discrete artificial boundary conditions (ABCs) for different finite difference schemes to solve nonlinear Schrödinger equations. These new discrete boundary conditions are motivated by the continuous ABCs recently obtained by the potential strategy of Szeftel. Since these new nonlinear ABCs are based on the discrete ABCs for the linear problem we first review the well-known results for the linear Schrödinger equation. We present our approach for a couple of finite difference schemes, including the Crank–Nicholson scheme, the Dùran–Sanz-Serna scheme, the DuFort–Frankel method and several split-step (fractional-step) methods such as the Lie splitting, the Strang splitting and the relaxation scheme of Besse. Finally, several numerical tests illustrate the accuracy and stability of our new discrete approach for the considered finite difference schemes.  相似文献   

16.
In this paper, a new numerical method is proposed and analyzed for the Allen–Cahn (AC) equation. We divide the AC equation into linear section and nonlinear section based on the idea of operator splitting. For the linear part, it is discretized by using the Crank–Nicolson scheme and solved by finite element method. The nonlinear part is solved accurately. In addition, a posteriori error estimator of AC equation is constructed in adaptive computation based on superconvergent cluster recovery. According to the proposed a posteriori error estimator, we design an adaptive algorithm for the AC equation. Numerical examples are also presented to illustrate the effectiveness of our adaptive procedure.  相似文献   

17.
An inverse problem concerning diffusion equation with source control parameter is considered. Several finite-difference schemes are presented for identifying the control parameter. These schemes are based on the classical forward time centred space (FTCS) explicit formula, and the 5-point FTCS explicit method and the classical backward time centred space (BTCS) implicit scheme, and the Crank–Nicolson implicit method. The classical FTCS explicit formula and the 5-point FTCS explicit technique are economical to use, are second-order accurate, but have bounded range of stability. The classical BTCS implicit scheme and the Crank–Nicolson implicit method are unconditionally stable, but these schemes use more central processor (CPU) times than the explicit finite difference mehods. The basis of analysis of the finite difference equations considered here is the modified equivalent partial differential equation approach, developed from the 1974 work of Warming and Hyett. This allows direct and simple comparison of the errors associated with the equations as well as providing a means to develop more accurate finite difference schemes. The results of a numerical experiment are presented, and the accuracy and CPU time needed for this inverse problem are discussed.  相似文献   

18.
In this paper, we propose an efficient numerical scheme for the space-fractional Klein–Gordon–Schrödinger (SFKGS) equations. Motivated by the “Invariant Energy Quadratization” (IEQ) approach, we introduce two auxiliary variables to transform the SFKGS system into a new equivalent system in which the time derivative is discretized by the Crank–Nicolson method, and the space discretization is based on the Fourier spectral method. Consequently, the numerical scheme shares two good features. The first feature is that the nonlinear terms are treated semi-explicitly and a linear symmetric system is solved at each time step. The second feature is the energy conservation at the discrete level. These two advantages are proved by the theoretical analysis and illustrated by a given numerical example.  相似文献   

19.

High-dimensional partial differential equations (PDEs) appear in a number of models from the financial industry, such as in derivative pricing models, credit valuation adjustment models, or portfolio optimization models. The PDEs in such applications are high-dimensional as the dimension corresponds to the number of financial assets in a portfolio. Moreover, such PDEs are often fully nonlinear due to the need to incorporate certain nonlinear phenomena in the model such as default risks, transaction costs, volatility uncertainty (Knightian uncertainty), or trading constraints in the model. Such high-dimensional fully nonlinear PDEs are exceedingly difficult to solve as the computational effort for standard approximation methods grows exponentially with the dimension. In this work, we propose a new method for solving high-dimensional fully nonlinear second-order PDEs. Our method can in particular be used to sample from high-dimensional nonlinear expectations. The method is based on (1) a connection between fully nonlinear second-order PDEs and second-order backward stochastic differential equations (2BSDEs), (2) a merged formulation of the PDE and the 2BSDE problem, (3) a temporal forward discretization of the 2BSDE and a spatial approximation via deep neural nets, and (4) a stochastic gradient descent-type optimization procedure. Numerical results obtained using TensorFlow in Python illustrate the efficiency and the accuracy of the method in the cases of a 100-dimensional Black–Scholes–Barenblatt equation, a 100-dimensional Hamilton–Jacobi–Bellman equation, and a nonlinear expectation of a 100-dimensional G-Brownian motion.

  相似文献   

20.
A high-order finite difference method for the two-dimensional coupled nonlinear Schrödinger equations is considered. The proposed scheme is proved to preserve the total mass and energy in a discrete sense and the solvability of the scheme is shown by using a fixed point theorem. By converting the scheme in the point-wise form into a matrix–vector form, we use the standard energy method to establish the optimal error estimate of the proposed scheme in the discrete L2-norm. The convergence order is proved to be of a fourth-order in space and a second-order in time, respectively. Finally, some numerical examples are given in order to confirm our theoretical results for the numerical method. The numerical results are compared with exact solutions and other existing method. The comparison between our numerical results and those of Sun and Wangreveals that our method improves the accuracy of space and time directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号