首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeThe purpose of this study was to evaluate the performance of motion-weighted Golden-angle RAdial Sparse Parallel MRI (motion-weighted GRASP) for free-breathing dynamic contrast-enhanced MRI (DCE-MRI) of the lung.MethodsMotion-weighted GRASP incorporates a soft-gating motion compensation algorithm into standard GRASP reconstruction, so that motion-corrupted motion k-space (e.g., k-space acquired in inspiratory phases) contributes less to the final reconstructed images. Lung MR data from 20 patients (mean age = 57.9 ± 13.5) with known pulmonary lesions were retrospectively collected for this study. Each subject underwent a free-breathing DCE-MR scan using a fat-statured T1-weighted stack-of-stars golden-angle radial sequence and a post-contrast breath-hold MR scan using a Cartesian volumetric-interpolated imaging sequence (BH-VIBE). Each radial dataset was reconstructed using GRASP without motion compensation and motion-weighted GRASP. All MR images were visually evaluated by two experienced radiologists blinded to reconstruction and acquisition schemes independently. In addition, the influence of motion-weighted reconstruction on dynamic contrast-enhancement patterns was also investigated.ResultsFor image quality assessment, motion-weighted GRASP received significantly higher visual scores than GRASP (P < 0.05) for overall image quality (3.68 vs. 3.39), lesion conspicuity (3.54 vs. 3.18) and overall artifact level (3.53 vs. 3.15). There was no significant difference (P > 0.05) between the breath-hold BH-VIBE and motion-weighted GRASP images. For assessment of temporal fidelity, motion-weighted GRASP maintained a good agreement with respect to GRASP.ConclusionMotion-weighted GRASP achieved better reconstruction performance in free-breathing DCE-MRI of the lung compared to standard GRASP, and it may enable improved assessment of pulmonary lesions.  相似文献   

2.
A 19F MR chemical shift imaging (CSI) technique is presented which enables selective imaging of the antineoplastic drug 5-fluorouracil (5-FU) and its major catabolite α-fluoro-β-alanine (FBAL). The CSI sequence employs a chemical shift selective (CHESS) saturation pulse to suppress either the 5-FU or the FBAL resonance before the other component of the two-line 19F MR spectrum is measured. Because the transmitter frequency can always be set to the Larmor frequency of the 19F resonance to be imaged, this approach yields 5-FU and FBAL MR images free of chemical shift artifacts in read-out and slice-selection direction. In phantom experiments, selective 5-FU and FBAL images with a spatial resolution of 15 × 15 × 20 mm3 (4.5 ml) were obtained in 30 min from a model solution, whose drug and catabolite concentrations were similar to those estimated in the liver of tumor patients undergoing IV chemotherapy with 5-FU. The drug-specific MR imaging technique developed is, therefore, well-suited for the direct and noninvasive monitoring of the up-take and trapping of 5-FU in liver tumors in vivo.  相似文献   

3.
Rationale and objectivesIn magnetic resonance (MR) fetal imaging, the image quality acquired by the traditional Cartesian-sampled breath-hold T1-weighted (T1W) sequence may be degraded by motion artifacts arising from both mother and fetus. The radial VIBE sequence is reported to be a viable alternative to conventional Cartesian acquisition for both pediatric and adult MR, yielding better image quality. This study evaluated the role of radial VIBE in fetal MR imaging and compared its image quality and motion artifacts with those of the Cartesian T1W sequence.Materials and methodsWe included 246 pregnant women with 50 lesions on 1.5-T MR imaging. Image quality and lesion conspicuity were evaluated by two radiologists, blinded to the acquisition schemes used, using a five-point scale, where a higher score indicated a better trajectory method. Mixed-model analysis of variance and interobserver variability assessment were performed.ResultsThe radial VIBE sequence showed a significantly better performance than conventional T1W imaging in the head and neck, fetal body, and placenta region: 3.92 ± 0.88 vs 3 ± 0.74, p < 0.001, 3.8 ± 0.94 vs 3.15 ± 0.87, p < 0.001, and 4.17 ± 0.63 vs 3.12 ± 0.72, p < 0.001, respectively. Additionally, fewer motion artifacts were observed in all regions with the radial VIBE sequence (p < 0.01). Of 50 lesions, 49 presented better lesion conspicuity on radial VIBE images than on T1W images (4.34 ± 0.91 vs 3.48 ± 1.46, p < 0.001).ConclusionFor fetal imaging, the radial VIBE sequences yielded better image quality and lesion conspicuity, with fewer motion artifacts, than conventional breath-hold Cartesian-sampled T1W sequences.  相似文献   

4.
PurposeObjects falling outside of the true elliptical field-of-view (FOV) in Propeller imaging show unique aliasing artifacts. This study proposes a de-aliasing approach to restore the signal intensities in Propeller images without extra data acquisition.Materials and methodsComputer simulation was performed on the Shepp-Logan head phantom deliberately placed obliquely to examine the signal aliasing. In addition, phantom and human imaging experiments were performed using Propeller imaging with various readouts on a 3.0 Tesla MR scanner. De-aliasing using the proposed method was then performed, with the first low-resolution single-blade image used to find out the aliasing patterns in all the single-blade images, followed by standard Propeller reconstruction. The Propeller images without and with de-aliasing were compared.ResultsComputer simulations showed signal loss at the image corners along with aliasing artifacts distributed along directions corresponding to the rotational blades, consistent with clinical observations. The proposed de-aliasing operation successfully restored the correct images in both phantom and human experiments.ConclusionThe de-aliasing operation is an effective adjunct to Propeller MR image reconstruction for retrospective restoration of aliased signals.  相似文献   

5.

Background

Using magnetic resonance (MR) imaging for navigating catheters has several advantages when compared with the current “gold standard” modality of X-ray imaging. A significant drawback to interventional MR is inferior temporal and spatial resolutions, as high spatial resolution images cannot be collected and displayed at rates equal to X-ray imaging. In particular, passive MR catheter tracking experiments that use positive contrast mechanisms have poor temporal imaging rates and signal-to-noise ratio. As a result, with passive methods, it is often difficult to reconstruct motion artifact-free tracking images from areas with motion, such as the thoracic cavity.

Methods

In this study, several accelerated MR acquisition strategies, including parallel imaging and compressed sensing (CS), were evaluated to determine which method is most effective at improving the frame rate and passive detection of catheters in regions of physiological motion. Device navigation was performed both in vitro, through the aortic arch of an anthropomorphic chest phantom, and in vivo from the femoral artery, up the descending aorta into the supra-aortic branching vessels in canines.

Results and Discussion

The different parallel imaging methods produced images of low quality. CS with a two-fold acceleration was found to be the most effective method for generating tracking images, improving the image frame rate to 5.2 Hz, while maintaining a relatively high in-plane resolution. Using CS, motion artifact was decreased and the catheters were visualized with good conspicuity near the heart.

Conclusions

The improvement in the imaging frame rate by image acceleration was sufficient to overcome motion artifacts and to better visualize catheters in the thoracic cavity with passive tracking. CS preformed best at tracking. Navigation with passive MR catheter tracking was demonstrated from the femoral artery to the carotid artery in canines.  相似文献   

6.
IntroductionAlthough T1 weighted spin echo (T1W SE) images are widely used to study anatomical details and pathologic abnormalities of the brain, its role in delineation of lesions and reduction of artifacts has not been thoroughly investigated. BLADE is a fairly new technique that has been reported to reduce motion artifacts and improve image quality.ObjectiveThe primary objective of this study is to compare the quality of T1-weighted fluid attenuated inversion recovery (FLAIR) images with BLADE technique (T1W FLAIR BLADE) and the quality of T1W SE images in the MR imaging of the brain. The goal is to highlight the advantages of the two sequences as well as which one can better reduce flow and motion artifacts so that the imaging of the lesions will not be impaired.Materials and methodsBrain examinations with T1W FLAIR BLADE and T1W SE sequences were performed on 48 patients using a 1.5 T scanner. These techniques were evaluated by two radiologists based on: a) a qualitative analysis i.e. overall image quality, presence of artifacts, CSF nulling; and b) a quantitative analysis of signal-to-noise ratios (SNR), contrast-to-noise ratios (CNR) and Relative Contrast. The statistical analysis was performed using the Kruskal-Wallis non-parametric system.ResultsIn the qualitative analysis, BLADE sequences had a higher scoring than the conventional sequences in all the cases. The overall image quality was better on T1W FLAIR BLADE. Motion and flow-related artifacts were lower in T1W FLAIR BLADE. Regarding the SNR measurements, T1W SE appeared to have higher values in the majority of cases, whilst T1W-FLAIR BLADE had higher values in the CNR and Relative Contrast measurements.ConclusionT1W FLAIR BLADE sequence appears to be superior to T1W SE in overall image quality and reduction of motion and flow-pulsation artifacts as well as in nulling CSF and has been preferred by the clinicians. T1W FLAIR BLADE may be an alternative approach in brain MRI imaging.  相似文献   

7.
Abstract

The advent of X-ray computed tomographic (CT) imaging revolutionized the evaluation of a wide range of pathological conditions by producing thin tomographic sections through the body with remarkable anatomical detail. By the early 1980s, X-ray CT was an established imaging modality, and a second computer-based form of imaging was emerging from the research laboratory into the clinic. The second wave of the imaging revolution has been the development of NMR imaging (usually referred to as magnetic resonance imaging, or MRI) and its acceptance as the preferred modality for much neurological and musculoskeletal imaging. MRI's soft-tissue contrast and resolution is superior to that of other imaging techniques, the low NMR signal from bone renders it superior to X-ray CT in many cases for images of the head and spine, it has more varied contrast possibilities than CT, and can image in any plane without repositioning the patient. In spite of the high cost of purchase and installation, MR scanners are proliferating rapidly, and techniques and clinical applications for MR imaging continue to advance at an equally rapid rate.  相似文献   

8.
PurposeWhile O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts.Theory and methodsA sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging.ResultsExperimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image.ConclusionsHigh resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging.  相似文献   

9.
In thorax and abdomen imaging, image quality may be affected by breathing motion. Cardiac MR images are typically obtained while the patient holds his or her breath, to avoid respiration-related artifacts. Although useful, breath-holding imposes constraints on scan duration, which in turn limits the achievable resolution and SNR. Longer scan times would be required to improve image quality, and effective strategies are needed to compensate for respiratory motion. A novel approach at respiratory compensation, targeted toward 3D free-breathing cardiac MRI, is presented here. The method aims at suppressing the negative effects of respiratory-induced cardiac motion while capturing the heart's beating motion. The method is designed so that the acquired data can be reconstructed in two different ways: First, a time series of images is reconstructed to quantify and correct for respiratory motion. Then, the corrected data are reconstructed a final time into a cardiac-phase series of images to capture the heart's beating motion. The method was implemented, and initial results are presented. A cardiac-phase series of 3D images, covering the entire heart, was obtained for two free-breathing volunteers. The present method may prove especially useful in situations where breath-holding is not an option, for example, for very sick, mentally impaired or infant patients.  相似文献   

10.
11.
Many areas of magnetic resonance (MR)-guided thermal therapy research would benefit from temperature maps with high spatial and temporal resolution. Conventional thermometry relies on the subtraction of baseline images, which makes it sensitive to tissue motion and frequency drift during the course of treatment. For another case is the limit of magnetic resonance imaging sampling speed, it is hard to accurately achieve MR thermometry with high spatiotemporal resolution especially for dynamic organs. To address these issues, a novel method for MR thermometry is presented by exploiting the data redundancy based on partial separability (PS) model and the referenceless thermometry. The PS model highly sparse sample two datasets in the (kt) space for image reconstruction, which respectively determine the spatial and temporal resolutions. After the phase information is extracted from the images reconstructed by the PS model, the background phase outside the heated region from each acquired phase image through a polynomial fitting is estimated. Extrapolation of the polynomial to the heated region serves as the background phase estimate, which is then subtracted from the actual phase. The thermometry results showed that this method could accurately capture the dynamic change of MR thermometric images with 1.5 mm × 1.5 mm spatial resolution and 250 ms temporal resolution, respectively. The in vivo experiment of MR-guided high intensity focused ultrasound research and the cardiac dynamic MR thermometry are shown to demonstrate the benefits of the proposed method in high spatiotemporal resolution MR thermometry.  相似文献   

12.
PurposeDeep brain stimulation (DBS) has become a widely performed surgical procedure for patients with medically refractory movement disorders and mental disorders. It is clinically important to set up a MRI protocol to map the brain targets and electrodes of the patients before and after DBS and to understand the imaging artifacts caused by the electrodes.MethodsFive patients with DBS electrodes implanted in the habenula (Hb), fourteen patients with globus pallidus internus (GPi) targeted DBS, three pre-DBS patients and seven healthy controls were included in the study. The MRI protocol consisted of magnetization prepared rapid acquisition gradient echo T1 (MPRAGE T1W), 3D multi-echo gradient recalled echo (ME-GRE) and 2D fast spin echo T2 (FSE T2W) sequences to map the brain targets and electrodes of the patients. Phantom experiments were also run to determine both the artifacts and the susceptibility of the electrodes. Signal to noise ratio (SNR) on T1W, T2W and GRE datasets were measured. The visibility of the brain structures was scored according to the Rose criterion. A detailed analysis of the characteristics of the electrodes in all three sequence types was performed to confirm the reliability of the postoperative MRI approach. In order to understand the signal behavior, we also simulated the corresponding magnitude data using the same imaging parameters as in the phantom sequences.ResultsThe mean ± inter-subject variability of the SNRs, across the subjects for T1W, T2W, and GRE datasets were 20.1 ± 8.1, 14.9 ± 3.2, and 43.0 ± 7.6, respectively. High resolution MPRAGE T1W and FSE T2W data both showed excellent contrast for the habenula and were complementary to each other. The mean visibility of the habenula in the 25 cases for the MPRAGE T1W data was 5.28 ± 1.11; and the mean visibility in the 20 cases for the FSE T2W data was 5.78 ± 1.30. Quantitative susceptibility mapping (QSM), reconstructed from the ME-GRE sequence, provided sufficient contrast to distinguish the substructures of the globus pallidus. The susceptibilities of the GPi and globus pallidus externa (GPe) were 0.087 ± 0.013 ppm and 0.115 ± 0.015 ppm, respectively. FSE T2W sequences provided the best image quality with smallest image blooming of stimulator leads compared to MPRAGE T1W images and GRE sequence images, the measured diameters of electrodes were 1.91 ± 0.22, 2.77 ± 0.22, and 2.72 ± 0.20 mm, respectively. High resolution, high bandwidth and short TE (TE = 2.6 ms) GRE helped constrain the artifacts to the area of the electrodes and the dipole effect seen in the GRE filtered phase data provided an effective mean to locate the end of the DBS lead.ConclusionThe imaging protocol consisting of MPRAGE T1W, FSE T2W and ME-GRE sequences provided excellent pre- and post-operative visualization of the brain targets and electrodes for patients undergoing DBS treatment. Although the artifacts around the electrodes can be severe, sometimes these same artifacts can be useful in identifying their location.  相似文献   

13.
Yi LiuZhi-guo Gui 《Optik》2012,123(23):2174-2178
Low-dose CT imaging has been particularly used in modern medical practice for its advantage on reducing the radiation dose to patients. However, excessive quantum noise is present in low dose X-ray imaging along with the decrease of the radiation dose; thus, there are obvious streak-like artifacts in reconstructed images. The statistical iterative reconstruction approach applied to the noisy sinogram before a filtered back-projection (FBP) is a resolution to deal with the noisy problem. In this paper, the statistical property of the noise sinogram was considered to achieve a satisfactory image reconstruction and a statistical iterative method with energy minimization was proposed to address the problem of streak-like artifacts. Simulations were performed and indicated that the proposed method could suppress noise and obviously decrease streak-like artifacts in reconstructed images.  相似文献   

14.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly in use as an investigational biomarker of response in cancer clinical studies. Proper registration of images acquired at different time points is essential for deriving diagnostic information from quantitative pharmacokinetic analysis of these data. Motion artifacts in the presence of time-varying intensity due to contrast enhancement make this registration problem challenging. DCE-MRI of chest and abdominal lesions is typically performed during sequential breath-holds, which introduces misregistration due to inconsistent diaphragm positions and also places constraints on temporal resolution vis-à-vis free-breathing. In this work, we have employed a computer-generated DCE-MRI phantom to compare the performance of two published methods, Progressive Principal Component Registration and Pharmacokinetic Model-Driven Registration, with Sequential Elastic Registration (SER) to register adjacent time-sample images using a published general-purpose elastic registration algorithm. In all three methods, a 3D rigid-body registration scheme with a mutual information similarity measure was used as a preprocessing step. The DCE-MRI phantom images were mathematically deformed to simulate misregistration, which was corrected using the three schemes. All three schemes were comparably successful in registering large regions of interest (ROIs) such as muscle, liver, and spleen. SER was superior in retaining tumor volume and shape, and in registering smaller but important ROIs such as tumor core and tumor rim. The performance of SER on clinical DCE-MRI data sets is also presented.  相似文献   

15.
PurposeTo investigate the correlations between cortical bone microstructural properties and total water proton density (TWPD) obtained from three-dimensional ultrashort echo time Cones (3D-UTE-Cones) magnetic resonance imaging techniques.Materials and methods135 cortical bone samples were harvested from human tibial and femoral midshafts of 37 donors (61 ± 24 years old). Samples were scanned using 3D-UTE-Cones sequences on a clinical 3T MRI and on a high-resolution micro-computed tomography (μCT) scanner. TWPD was measured using 3D-UTE-Cones MR images. Average bone porosity, pore size, and bone mineral density (BMD) were measured from μCT images at 9 μm voxel size. Pearson's correlation coefficients between TWPD and μCT-based measures were calculated.ResultsTWPD showed significant moderate correlation with both average bone porosity (R = 0.66, p < 0.01) and pore size (R = 0.57, p < 0.01). TWPD also showed significant strong correction with BMD (R = 0.71, p < 0.01).ConclusionsThe presented 3D-UTE-Cones imaging technique allows assessment of TWPD in human cortical bone. This quick UTE-MRI-based technique was capable of predicting bone microstructure differences with significant correlations. Such correlations highlight the potential of UTE-MRI-based measurement of bone water proton density to assess bone microstructure.  相似文献   

16.
PurposeSegmentation of the whole breast and fibroglandular tissue (FGT) is important for quantitatively analyzing the breast cancer risk in the dynamic contrast-enhanced magnetic resonance (DCE-MR) images. The purpose of this study is to improve the accuracy and efficiency of the segmentation of the whole breast and FGT in 3-D fat-suppressed DCE-MR images with a versatile deep learning (DL) framework.MethodsWe randomly collected 100 breast DCE-MR scans from Shanghai Cancer Hospital of Fudan University. The MR scans in the dataset were different in both the spatial resolution and the MR scanners employed. Furthermore, four breast density categories were assessed by radiologists based on Breast Imaging Reporting and Data System (BI-RADS) of American College of Radiology. The dataset was separated into the training and the testing sets, while keeping a balanced distribution of scans with different imaging parameters and density categories. The nnU-Net has been recently proposed to automatically adapt preprocessing strategies and network architectures for a given medical image dataset, thus showing a great potential in the systematic adaptation of DL methods to different datasets. In this study, we applied the nnU-Net to segment the whole breast and FGT in 3-D fat-suppressed DCE-MR images. Five-fold cross validation was employed to train and validate the segmentation method.ResultsThe segmentation performance was evaluated with the volume and surface agreement metrics between the DL-based automatic and the manually delineated masks, as quantified with the following measures: the average Dice volume overlap (0.968 ± 0.017 and 0.877 ± 0.081), the average surface distances (0.201 ± 0.080 mm and 0.310 ± 0.043 mm), and the Pearson correlation coefficient of masks (0.995 and 0.972) between the automatic and the manually delineated masks, as calculated for the whole breast and the FGT segmentation, respectively. The correlation coefficient between the breast densities obtained with the DL-based segmentation and the manual delineation was 0.981. There was a positive bias of 0.8% (DL-based relative to manual) in breast density measurement with the Bland-Altman plot. The execution time of the DL-based segmentation was approximately 20 s for the whole breast segmentation and 15 s for the FGT segmentation.ConclusionsOur DL-based segmentation framework using nnU-Net could robustly achieve high accuracy and efficiency across variable MR imaging settings without extra pre- or post-processing procedures. It would be useful for developing DCE-MR-based CAD systems to quantify breast cancer risk and to be integrated into the clinical workflow.  相似文献   

17.
孙怡  朱佩平  于健  陈欣 《光学学报》2007,27(4):49-754
X射线相位衬度成像是一种新型的X射线成像技术,通过记录射线穿过物体后相位的改变对物体进行成像,可以提供比传统的X射线吸收成像更高的图像衬度以及空间分辨力。衍射增强成像方法(Diffraction enhancedimaging,DEI)是X射线相位衬度成像方法之一,利用一块放置在物体和探测器之间的分析晶体提取物体的吸收、折射以及散射信息并进行成像。将衍射增强成像方法与计算机断层成像技术(Computerized Tomography)进行结合,利用吸收、散射以及折射信息,分别采用滤波反投影以及雷登(Radon)变换,对昆虫样品——蜜蜂进行计算层析重建,获得了好于X射线吸收计算层析的重建结果,验证了衍射增强成像信息分离计算层析的优越性。  相似文献   

18.
The purpose of this study was to compare the gradient spin-echo (GRASE) to the fast spin-echo (FSE) implementation of fast fluid-attenuated inversion recovery (FLAIR) sequences for brain imaging. Thirty patients with high signal intensity lesions on T2-weighted images were examined on a 1.5 T MR system. Scan time-minimized thin-section FLAIR-FSE and FLAIR-GRASE sequences were obtained and compared side by side. Image assessment criteria were lesion conspicuity, contrast between different types of normal tissue, image quality, and artifacts. In addition, contrast ratios and contrast-to-noise ratios were determined. Compared to FSE, the GRASE technique allowed a 17% reduction in scan time but conspicuity of small lesions in particular was significantly lower on FLAIR-GRASE images because of higher image noise and increased artifacts. Gray-white differentiation was slightly worse on FLAIR-GRASE. Physiological ferritin deposition appeared slightly darker on FLAIR-GRASE images and susceptibility artifacts were stronger. Fatty tissue was less bright with FLAIR-GRASE. With current standard hardware equipment, the GRASE technique is not an adequate alternative to FSE for the implementation of fast FLAIR sequences in routine clinical MR brain imaging.  相似文献   

19.
PURPOSE: To acquire high-resolution magnetic resonance (MR) images, we developed a new blinking artifact reduced pulse (BARP) sequence with a surface coil specialized for microscopic imaging (47 mm in diameter). MATERIALS AND METHODS: To reduce eye movement, we ascertained that the subjects' eyes were kept open and fixated to the target in the 1.5-T MR gantry. To reduce motion artifacts from blinking, we inserted rest periods for blinking (1.5 s within every 5 s) during MR scanning (T2-weighted fast spin echo; repetition time, 5 s; echo time, 100 ms; echo train, 11; matrix, 256 x 128; field of view, 5 cm; 1-mm thickness x 30 slices). Three scans (100 s x 3) were performed for each normal subject, and they were added together after automatic adjustment for location to reduce quality loss caused by head motion. RESULTS: T2-weighted MR images were acquired with a high resolution and a high signal-to-noise ratio. Motion artifacts were reduced with BARP, as compared with those with random blinking. Intraocular structures such as the iris and ciliary muscles were clearly visualized. Because the whole eye can be covered with a 1-mm thickness by this method, three-dimensional maps can easily be generated from the obtained images. CONCLUSION: The application of BARP with a surface coil of the human eye might become a useful and widely adopted procedure for MR microimaging.  相似文献   

20.
Fast MR imaging attracts the interest of both clinicians and physicists because new diagnostic information arises with reduced artifacts due to short investigational times. With the acceleration of the Snapshot FLASH MR sequence, the measurement of high-resolution images with 256 x 256 matrix is reported, together with contrasting prepulses that are applied to attain contrast in combination with higher in-plane resolution. Measuring times are in the range of a second. For whole-body imaging, a TR = 5.2 msec and a TE = 2.6 msec could be attained measuring omit 256 x 256 matrix images. Artifact-free images demonstrating T1 contrast and contrast from chemical shift are performed on moving organs (heart, intestine) in different experiments. These applications can easily be performed in a couple of minutes for clinical use. Especially in the lung, short TE and high resolution result in a new imaging quality of pulmonary and mediastinal vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号