首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Mathematical Modelling》2014,38(9-10):2311-2327
This paper investigates dynamic, frictional contact of a moving punch over the surface of anisotropic materials. An eigenvalue analysis of the governing equations is performed. The application of the complex function theory produces a singular integral equation exhibiting a non-square-root or unconventional singularity. Numerical tests demonstrate that both the friction coefficient and the moving velocity contribute to the contact behaviors under a moving punch with a flat or cylindrical profile. Furthermore, the present results illustrate that the surface in-plane stress possesses singularity and discontinuation at both edges of the flat punch and has a tensile spike at one edge of the cylindrical punch, which may account for the fatigue and fracture under the contact loading.  相似文献   

2.
The axisymmetric torsional fretting contact between a rigid conducting spherical punch and a functionally graded piezoelectric material (FGPM) coating is studied in this paper. The exponential model is used to simulate the inhomogeneous electro-mechanical properties of the FGPMs coating. The conducting spherical punch with a constant surface electric potential is considered in the contact. A normal force and a cyclic torque are applied to the two contact bodies. The applied torque produces an outer annular slip area and an inner stick area. The torsion angle is produced within the inner stick area as a rigid body. With the aid of the Hankel integral transform technique, we can reduce the contact problem to the singular integral equations of the Cauchy type. Then the unknown electro-mechanical fields and stick/slip area can be obtained numerically. The effect of the gradient index on the surface electro-mechanical fields is discussed at loading and unloading phases. The Mises stress and principal stress at the contact surface are also discussed to predict the possible location of fretting damage and failure.  相似文献   

3.
This paper investigates the two-dimensional sliding frictional contact of a piezoelectric half-plane in the plane strain state under the action of a rigid flat or a triangular punch. It is assumed that the punch is a perfect electrical conductor with a constant electric potential. By using the Fourier integral transform technique and the superposition theorem, the problem is reduced to a pair of coupled Cauchy singular integral equations and then is numerically solved to determine the unknown contact pressure and surface electric charge distribution. The effects of the friction coefficient and electro-mechanical loads on the normal contact stress, normal electric displacement, in-plane stress and in-plane electric displacement are discussed in detail. It is found that the friction coefficient has a significant effect on the electro-mechanical sliding frictional contact behaviors of the piezoelectric materials.  相似文献   

4.
The paper aims at the contact mechanics of functionally graded coated substrate by taking into the adhesion effect. The coating-substrate structure is indented by a cylindrical punch to form a contact region where the adhesion forces are described by using the Maugis adhesion model. A piece-wise exponential multi-layered (PWEML) model is used to simulate the functionally graded materials with arbitrary spatial variation of material properties. This model divided the functionally graded coating into several sub-layers in which the elastic parameter varies as exponential form. Using the Fourier transform technique and the Transfer matrix method, the boundary value problem for adhesive contact of graded coated substrate is reduced to the singular integral equation. Some numerical results are presented to analyze the influence of gradient index on the pull-out force, contact stresses and adhesion region. The results can be applied to improve the performance of the coating by adjusting the gradient index.  相似文献   

5.
The elastodynamic problem of a rigid punch moving at a constant sub-Rayleigh speed across the surface of an elastic half-space is investigated in the present paper. The unknown contact region is determined as part of solution from the unilateral or Signorini conditions. Numerical results are plotted showing how the eccentricity of the contact ellipse changes with the punch speed. Some asymptotic properties of the solution for the case where the punch speed is comparable with the Rayleigh wave speed are explored in details.  相似文献   

6.
Static rigid 2-D indentation of a linearly elastic half-plane in the presence of Coulomb friction which reverses its sign along the contact length is studied. The solution approach lies within the context of the mathematical theory of elastic contact mechanics. A rigid punch, having an unsymmetrical profile with respect to its apex and no concave regions, both slides over and indents slowly the surface of the deformable body. Both a normal and a tangential force may, therefore, be exerted on the punch. In such a situation, depending upon the punch profile and the relative magnitudes of the two external forces, a point in the contact zone may exist at which the surface friction changes direction. Moreover, this point of sign reversal may not coincide, in general, with the indentor's apex. This position and the positions of the contact zone edges can be determined only by first constructing a solution form containing the three problem's unspecified lengths, and then solving numerically a system of non-linear equations containing integrals not available in closed form.The mathematical procedure used to construct the solution deals with the Navier-Cauchy partial differential equations (plane-strain elastostatic field equations) supplied with boundary conditions of a mixed type. We succeed in formulating a second-kind Cauchy singular integral equation and solving it exactly by analytic-function theory methods.Representative numerical results are presented for two indentor profiles of practical interest—the parabola and the wedge.  相似文献   

7.
The plane contact problem of elasticity theory on the interaction when there are friction forces in the contact area of an absolutely rigid cylinder (punch) with an internal surface of a cylindrical base, consisting of two circular cylindrical layers rigidly connected to one another and with an elastic space, is considered. The layers and space have different elastic constants. A vertical force and a counterclockwise torque, act on the punch, and the punch – base system is in a state of limiting equilibrium,. An exact integral equation of the first kind with a kernel represented in an explicit analytical form, is obtained for the first time for this problem using analytical calculation programs. The main properties of the kernel of the integral equation are investigated, and it is shown that the numerator and denominator of the kernel symbols can be represented in the form of polynomials in products of the powers of the moduli of the displacement of the layers and the half-space. A solution of the integral equation is constructed by the direct collocation method, which enables the solution of the problem to be obtained for practically any values of the initial parameters. The contact stress distributions, the dimensions of the contact area, the interconnection between the punch displacement and the forces and torques acting on it are calculated as a function of the geometrical and mechanical parameters of the layers and the space. The results of the calculations in special cases are compared with previously known results.  相似文献   

8.
In the contact problem of a rigid flat-ended punch on an elastic half-plane, the contact stress under punch is studied. The angle distribution for the stress components in the elastic medium under punch is achieved in an explicit form. From obtained singular stress distribution, the punch singular stress factor (abbreviated as PSSF) is defined. A fundamental solution for the multiple flat punch problems on the elastic half-plane is investigated where the punches are disconnected and the forces applied on the punches are arbitrary. The singular integral equation method is suggested to obtain the fundamental solution. Further, the contact problem for rigidly connected punches on an elastic half-plane is considered. The solution for this problem can be considered as a superposition of many particular fundamental solutions. The resultant forces on punches are the undetermined unknowns in the problem, which can be evaluated by the condition of relative descent between punches. Finally, the resultant forces on punches can be determined, and the PSSFs at the corner points can be evaluated. Numerical examples are given.  相似文献   

9.
The plane problem of the sliding contact of a punch with an elastic foundation when there is friction and wear is considered. Assuming the existence of a steady solution in a moving system of coordinates, relations are derived between the sliding velocity, the wear, the contact stresses and the displacements for an arbitrary dependence of the wear rate on the contact pressure. Taking into account the presence of a deformation component of the friction force, an equation is written for the balance of the mechanical energy for the punch - elastic base system considered. It is shown that the equality of the work of the external force in displacing the punch to the losses due to friction and the change in the shape of the foundation due to wear is satisfied when the work done by the contact stresses on the increments of the boundary displacements is equal to zero, and the frictional losses must be determined taking into account the non-uniformity of the distributions of the shear contact stresses and the sliding velocity in the contact area. Two special cases of the foundation in the form of a wide and narrow strip are considered, for which the total coefficient of friction is calculated, taking into account the deformation component of the friction force.  相似文献   

10.
An asymptotic method is proposed for solving transient dynamic contact problems of the theory of elasticity for a thin strip. The solution of problems by means of the integral Laplace transformation (with respect to time) and the Fourier transformation (with respect to the longitudinal coordinate) reduces to an integral equation in the form of a convolution of the first kind in the unknown Laplace transform of contact stresses under the punch. The zeroth term of the asymptotic form of the solution of the integral equation for large values of the Laplace parameter is constructed in the form of the superposition of solutions of the corresponding Wiener-Hopf integral equations minus the solution of the corresponding integral equation on the entire axis. In solving the Wiener-Hopf integral equations, the symbols of the kernel of the integral equation in the complex plane is presented in special form — in the form of uniform expansion in terms of exponential functions. The latter enables integral equations of the second kind to be obtained for determining the Laplace-Fourier transform of the required contact stresses, which, in turn, is effectively solved by the method of successive approximations. After Laplace inversion of the zeroth term of the asymptotic form of the solution of the integral equations, the asymptotic solution of the transient dynamic contact problem is determined. By way of example, the asymptotic solution of the problem of the penetration of a plane punch into an elastic strip lying without friction on a rigid base is given. Formulae are derived for the active elastic resistance force on the punch of a medium preventing the penetration of the punch, and the law of penetration of the punch into the elastic strip is obtained, taking into account the elastic stress wave reflected from the strip face opposite the punch and passing underneath it.  相似文献   

11.
The frictional contact problem of anisotropic materials under a moving rigid stamp is solved exactly. Inside the contact region, the Coulomb friction law is applied. Both Galilean transformation and Fourier transform are employed to get the appropriate fundamental solutions, which can lead to real solutions of physical quantities no matter whether the eigenvalues are real or complex. The complicated mixed boundary value problem is converted to singular integral equations of the second kind, which are solved analytically in terms of elementary functions for either a triangular or a parabolic stamp. Explicit formulae of surface stresses are obtained. Numerical analyses are performed in detail to reveal the surface damage mechanism. It is also found that in the frictionally moving contact problem, the friction coefficient has a more important role than the moving velocity.  相似文献   

12.
Analytical methods for solving problems of the interaction of punches with two-layer bases are described using in the example of the axisymmetric contact problem of the theory of elasticity of the interaction of an absolutely rigid sphere (a punch) with the inner surface of a two-layer spherical base. It is assumed that the outer surface of the spherical base is fixed, that the layers have different elastic constants and are rigidly joined to one anther, and that there are no friction forces in the contact area. Several properties of the integral equation of this problem are investigated, and schemes for solving them using the asymptotic method and the direct collocation method are devised. The asymptotic method can be used to investigate the problem for relatively small layer thicknesses, and the proposed algorithm for solving the problem by the collocation method is applicable for practically any values of the initial parameters. A calculation of the contact stress distribution, the parameters of the contact area, and the relation between the displacement of the punch and the force acting on it is given. The results obtained by these methods are compared, and a comparison with results obtained using Hertz, method is made for the case in which the relative thickness of the layers is large.  相似文献   

13.
考虑了材料参数可按照任意函数形式变化的功能梯度压电材料(FGPM)涂层在不同形状导电压头作用下的接触问题,研究了梯度系数对功能梯度压电涂层接触力学行为的影响.建立了多层功能梯度压电材料涂层模型,运用了Fourier积分变换和传递矩阵将多层功能梯度压电材料涂层的接触问题转化为奇异积分方程.利用GaussChebyshev数值计算方法,得到了多层功能梯度压电材料涂层-基底结构在刚性导电平压头和圆柱形压头作用下的表面应力分布和电荷分布.利用数值解,分析了材料参数按照不同变化形式的FGPM涂层对最大压痕和电势的影响,还分析了功能梯度压电涂层内部的应力和电位移分布.研究结果表明,功能梯度压电材料参数的不同变化形式对结构的接触性能具有重要的影响.  相似文献   

14.
The dynamic contact problem of the motion of a flat punch on the boundary of an elastic half-plane is considered. During motion, the punch deforms the elastic half-plane, penetrating it in such a manner that its base remains parallel to the boundary of the half-plane at each instant of time. In movable coordinates connected to the moving punch, the contact problem reduces to solving a two-dimensional integral equation, whose two-dimensional kernel depends on the difference between the arguments for each of the variables. An approximate solution of the integral equation of the problem is constructed in the form of a Neumann series, whose zeroth term is represented in the form of the superposition of the solutions of two-dimensional integral equations on the coordinate semiaxis minus the solution of the integral equation on the entire axis. This approach provides a way to construct the solution of the two-dimensional integral equation of the problem in four velocity ranges of motion of the punch, which cover the entire spectrum of its velocities, as well as to perform a detailed analysis of the special features of the contact stresses and vertical displacements of the free surface on the boundary of the contract area. An approximate method for solving the integral equation, which is based on a special approximation of the integrand of the kernel of the integral equation in the complex plane, is proposed for obtaining effective solutions of the problem that do not contain singular quadratures.  相似文献   

15.
The quasi-static three-dimensional problem of elasticity theory for a hyperelastic body under finite deformations, loading by bulk and surface forces, partial fastening and unilateral contact with a rigid punch and in the presence of time-dependent anisotropic Coulomb friction is considered. The equivalent variational formulation contains a quasi-variational inequality. After time discretization and application of the iteration method, the problem arising with “specified” friction is reduced to a non-convex miniumum functional problem, which is studied by Ball's scheme. The operator in contact stress space is determined. It is shown that a threshold level of the coefficient of friction corresponds to each level of loading, below which there is at least one fixed point of the operator. If the solution at a certain instant of time is known, the iteration process converges to the solution of the problem at the next, fairly close instant of time.  相似文献   

16.
Solutions of three-dimensional boundary-value problems of the theory of elasticity are given for a wedge, on one face of which a concentrated shearing force is applied, parallel to its edge, while the other face is stress-free or is in a state of rigid or sliding clamping. The solutions are obtained using the method of integral transformations and the technique of reducing the boundary-value problem of the theory of elasticity to a Hilbert problem, as generalized by Vekua (functional equations with a shift of the argument when there are integral terms). Using these and previously obtained equations, quasi-static contact problems of the motion of a punch with friction at an arbitrary angle to the edge of the wedge are considered. In a similar way the contact area can move to the edge of a tooth in Novikov toothed gears. The method of non-linear boundary integral equations is used to investigate contact problems with an unknown contact area.  相似文献   

17.
A singular integral equation with a Cauchy kernel and a logarithmic singularity on its righthand side is considered on a finite interval. An algorithm is proposed for the numerical solution of this equation. The contact elasticity problem of a П-shaped rigid punch indented into a half-plane is solved in the case of a uniform hydrostatic pressure occurring under the punch, which leads to a logarithmic singularity at an endpoint of the integration interval. The numerical solution of this problem shows the efficiency of the proposed approach and suggests that the singularity has to be taken into account in solving the equation.  相似文献   

18.
Calculations are presented of the indentation of a spherical punch into an ideally plastic half-space under condition of complete plasticity and taking account of contact friction, which is modelled according to Prandtl and Coulomb. Friction leads to the formation of a rigid zone at the centre of the punch when there is slipping of the material on the remaining part of the contact boundary. Limit values of the friction coefficients are obtained for which the rigid zone extends over the whole of the contact boundary. The dependence of the indentation force on the radius of the plastic area is in good agreement with experimental data.  相似文献   

19.
The transient dynamic contact problem of the impact of a plane absolutely rigid punch on an elastic half-plane is considered. The solution of the integral equation of this problem in terms of the unknown Laplace transform of the contact stresses at the punch base is constructed by a special method of successive approximations. The solution of the transient dynamic contact problem is obtained after applying an inverse Laplace transformation to the solution of the integral equation over the whole time range of the impact process, and the law of the penetration of the punch into the elastic medium is determined from a Volterra-type integrodifferential equation. The conditions for the punch to begin to separate from the elastic half-plane are formulated from the solution obtained, and all the stages of the separation process are investigated in detail. The law of the punch motion on the elastic half-plane and the width of the contact area, which varies during the separation, are then determined from the solution of the Volterra-type integrodifferential equation when an additional condition is satisfied.  相似文献   

20.
The main terms of the asymptotic form of the solution of the contact problem of the compression without friction of an elastic body and a punch initially in point contact are constructed by the method of matched asymptotic expansions using an improved matching procedure. The condition of unilateral contact is formulated taking account of tangential displacements on the contact surface. An asymptotic solution of the problem for the boundary layer is constructed by the complex potential method. An asymptotic model is constructed, extending the Hertz theory to the case where the surfaces of the punch and elastic body in the vicinity of the contact area are approximated by paraboloids of revolution. The problem of determining the convergence of the contacting bodies from the magnitude of the compressive force is reduced to the problem of calculating the so-called coefficient of local compliance, which is an integral characteristic of the geometry of the elastic body and its fixing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号