首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeTo explore feasibility of using the vessel length on time-of-flight (TOF) or simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) MRA as an imaging biomarker for brain blood flow, by using arterial spin labeling (ASL) perfusion imaging and 3D phase contrast (PC) quantitative flow imaging as references.MethodsIn a population of thirty subjects with carotid atherosclerotic disease, the visible intracranial arteries on TOF and SNAP were semi-automatically traced and the total length of the distal segments was calculated with a dedicated software named iCafe. ASL blood flow was calculated automatically using the recommended hemodynamic model. PC blood flow was obtained by generating cross-sectional arterial images and semi-automatically drawing the lumen contours. Pearson correlation coefficients were used to assess the associations between the different whole-brain or hemispheric blood flow measurements.ResultsUnder the imaging protocol used in this study, TOF vessel length was larger than SNAP vessel length (P < 0.001). Both whole-brain TOF and SNAP vessel length showed a correlation with whole brain ASL and 3D PC blood flow measurements, and the correlation coefficients were higher for SNAP vessel length (TOF vs ASL: R = 0.554, P = 0.002; SNAP vs ASL: R = 0.711, P < 0.001; TOF vs 3D PC: R = 0.358, P = 0.052; SNAP vs 3D PC: R = 0.425, P = 0.019). Similar correlation results were observed for the hemispheric measurements. Hemispheric asymmetry index of SNAP vessel length also showed a significant correlation with hemispheric asymmetry index of ASL cerebral blood flow (R = 0.770, P < 0.001).ConclusionThe results suggest that length of the visible intracranial arteries on TOF or SNAP MRA can serve as a potential imaging marker for brain blood flow.  相似文献   

2.
PurposeThe conventional volumetric approaches of measuring cardiac function are load-dependent, and are not able to discriminate functional changes in the infarct, transition and remote myocardium. We examined phase-dependent regional mechanical changes in the infarct, transition and remote regions after acute myocardial infarction (MI) in a preclinical mouse model using cardiovascular magnetic resonance imaging (CMR).MethodsWe induced acute MI in six mice with left anterior descending coronary artery ligation. We then examined cardiac (infarct, transition and remote-zone) morphology and function utilizing 9.4 T high field CMR before and 2 weeks after the induction of acute MI. Myocardial scar tissue was evaluated by using CMR with late gadolinium enhancement (LGE). After determining global function through volumetric analysis, regional wall motion was evaluated by measuring wall thickening and radial velocities. Strain rate imaging was performed to assess circumferential contraction and relaxation at the myocardium, endocardium, and epicardium.ResultsThere was abnormal LGE in the anterior walls after acute MI suggesting a successful MI procedure. The transition zone consisted of a mixed signal intensity, while the remote zone contained viable myocardium. As expected, the infarct zone had demonstrated severely decreased myocardial velocities and strain rates, suggesting reduced contraction and relaxation function. Compared to pre-infarct baseline, systolic and diastolic velocities (vS and vD) were significantly reduced at the transition zone (vS: −1.86 ± 0.16 cm/s vs −0.68 ± 0.13 cm/s, P < 0.001; vD: 1.86 ± 0.17 cm/s vs 0.53 ± 0.06 cm/s, P < 0.001) and remote zone (vS: −1.86 ± 0.16 cm/s vs −0.65 ± 0.12 cm/s, P < 0.001; vD: 1.86 ± 0.16 cm/s vs 0.51 ± 0.04 cm/s, P < 0.001). Myocardial peak systolic and diastolic strain rates (SRS and SRD) were significantly lower in the transition zone (SRS: −4.2 ± 0.3 s−1 vs −1.3 ± 0.2 s−1, P < 0.001; SRD: 3.9 ± 0.3 s−1 vs 1.3 ± 0.2 s−1, P < 0.001) and remote zone (SRS: −3.8 ± 0.3 s−1 vs −1.4 ± 0.3 s−1, P < 0.001; SRD: 3.5 ± 0.2 s−1 vs 1.5 ± 0.4 s−1, P = 0.006). Endocardial and epicardial SRS and SRD were similarly reduced in the transition and remote zones compared to baseline.ConclusionsThis study, for the first time, utilized state-of-the art high-field CMR algorithms in a preclinical mouse model for a comprehensive and controlled evaluation of the regional mechanical changes in the transition and remote zones, after acute MI. Our data demonstrate that CMR can quantitatively monitor dynamic post-MI remodeling in the transition and remote zones, thereby serving as a gold standard tool for therapeutic surveillance.  相似文献   

3.
ObjectiveIn this study, we sought to investigate the feasibility of fast carotid artery MR angiography (MRA) by combining three-dimensional time-of-flight (3D TOF) with compressed sensing method (CS-3D TOF).Materials and methodsA pseudo-sequential phase encoding order was developed for CS-3D TOF to generate hyper-intense vessel and suppress background tissues in under-sampled 3D k-space. Seven healthy volunteers and one patient with carotid artery stenosis were recruited for this study. Five sequential CS-3D TOF scans were implemented at 1, 2, 3, 4 and 5-fold acceleration factors for carotid artery MRA. Blood signal-to-tissue ratio (BTR) values for fully-sampled and under-sampled acquisitions were calculated and compared in seven subjects. Blood area (BA) was measured and compared between fully sampled acquisition and each under-sampled one.ResultsThere were no significant differences between the fully-sampled dataset and each under-sampled in BTR comparisons (P > 0.05 for all comparisons). The carotid vessel BAs measured from the images of CS-3D TOF sequences with 2, 3, 4 and 5-fold acceleration scans were all highly correlated with that of the fully-sampled acquisition. The contrast between blood vessels and background tissues of the images at 2 to 5-fold acceleration is comparable to that of fully sampled images. The images at 2 × to 5 × exhibit the comparable lumen definition to the corresponding images at 1 ×.ConclusionBy combining the pseudo-sequential phase encoding order, CS reconstruction, and 3D TOF sequence, this technique provides excellent visualizations for carotid vessel and calcifications in a short scan time. It has the potential to be integrated into current multiple blood contrast imaging protocol.  相似文献   

4.
PurposeEnhanced acceleration selective arterial spin labeling (eAccASL) was introduced as non-enhanced and non-gated magnetic resonance angiography (MRA). This technique has not been applied to hand MRA. The objective of this study was to optimize the eAccASL for MRA of the hands and to investigate the factors for MRA visibility of the hands.MethodsTwenty healthy volunteers were examined on a 1.5 T MR system. To evaluate arterial visualization, we compared four different acceleration-encoding (AENC) values (i.e., 0.12, 0.29, 0.58, and 0.87 m/s2). Image quality score regarding the MRA depiction of the proximal artery (range, 0–10), the distal artery (0–5), and venous contamination (0–5) was evaluated by three radiologists. We measured the peak to peak arterial blood flow velocity (Vpp) measured by phase contrast cine MRI and hand temperature as the factors for arterial visualization. Qualitative scores were compared with Friedman's tests. Spearman's correlation of qualitative scores with Vpp and hand temperature was performed to analyze influencing factors.ResultsFor the distal arterial depiction, scores at AENC 0.12 (median, 9.0) and AENC 0.29 (8.0) were significantly better (both P < 0.0001) than those at AENC 0.87 (5.5). For the proximal arterial depiction, scores at AENC 0.12 (2.25) and AENC 0.29 (2.0) were significantly better (P < 0.001 and P < 0.01, respectively) than those at AENC 0.87 (1.5). Conversely, venous contamination scores at AENC 0.12 (3.0) and AENC 0.29 (3.0) were significantly worse (both P < 0.0001) than those at AENC 0.87 (4.0). There were significantly negative correlations between venous contamination and Vpp at AENC 0.12 (ρ = −0.56, P = 0.01), and 0.29 (ρ = −0.68, P = 0.001), whereas hand temperatures were not significantly correlated with scores (all P > 0.05).ConclusioneAccASL MRA of the hands was optimized by using low AENC values (0.12–0.29 m/s2). Venous contamination may increase with elevation of arterial blood flow.  相似文献   

5.
ObjectivesTo evaluate the diagnostic usefulness of synthetic T2-weighted images of the lumbar spine derived from ten-fold undersampled k-space data using GRAPPATINI, a combination of a model-based approach for rapid T2 and M0 quantification (MARTINI) extended by generalized autocalibrating partial parallel acquistion (GRAPPA).Materials and methodsOverall, 58 individuals (26 female, mean age 23.3 ± 8.1 years) were examined at 3 Tesla with sagittal and axial T2w turbo spin echo (TSE) sequences compared to synthetic T2weighted contrasts derived at identical effective echo times and spatial resolutions. Two blinded readers graded disk degeneration and evaluated the lumbar intervertebral disks for present herniation or annular tear. One reader reassessed all studies after four weeks. Weighted kappa statistics were calculated to assess inter-rater and intra-rater agreement. Also, all studies were segmented manually by one reader to compute contrast ratios (CR) and contrast-to-noise ratios (CNR) of the nucleus pulposus and the annulus fibrosus.ResultsOverall, the CRT2w was 4.45 ± 1.80 and CRT2synth was 4.71 ± 2.14. Both correlated (rsp = 0.768;p < 0.001) and differed (0.26 ± 1.38;p = 0.002) significantly. The CNRT2w was 1.73 ± 0.52 and CNRT2synth was 1.63 ± 0.50. Both correlated (rsp = 0.875;p < 0.001) and differed (−0.10 ± 0.25;p < 0.001) significantly. The inter-rater agreement was substantial to almost perfect (κ = 0.808–0.925) with the intra-rater agreement also substantial to almost perfect (κ = 0.862–0.963). The area under the curve of the receiver operating characteristics assessing disk herniation or annular tear ranged from 0.787 to 0.892.ConclusionsThis study concludes that synthetic images derived by GRAPPATINI can be used for clinical routine assessment with inter-rater and intra-rater agreements comparable to conventional T2w TSE.  相似文献   

6.
PurposeTo investigate velocity encoded and velocity compensated variants of multi-spoke RF pulses that can be used for flip-angle homogenization at ultra-high fields (UHF). Attention is paid to the velocity encoding for each individual spoke pulse and to displacement artifacts that arise in Fourier transform imaging in the presence of flow.Theory and methodsA gradient waveform design for multi-spoke excitation providing an algorithm for minimal TE was proposed that allows two different encodings. Such schemes were compared to an encoding approach that applies an established scheme to multi-spoke excitations. The impact on image quality and quantitative velocity maps was evaluated in phantoms using single- and two-spoke excitations. Additional validation measurements were obtained in-vivo at 7 T.ResultsPhantom experiments showed that keeping the first gradient moment constant for all k-space lines eliminates any displacements in phase-encoding and slice-selection direction for all spoke pulses but leads to artifacts for non-zero velocity components along readout direction. Introducing variable but well-defined first gradient moments in the phase-encoding direction creates displacements along the velocity vector and thus minimizes velocity-induced geometrical distortions. Phase-resolved mean volume flow in the ascending and descending aorta obtained from two-spoke excitation showed excellent agreement with single-spoke excitation over the cardiac cycle (mean difference 0.8 ± 16.2 ml/s).ConclusionsThe use of single- and multi-spoke RF pulses for flow quantification at 7 T with controlled displacement artifacts has been successfully demonstrated. The presented techniques form the basis for correct velocity quantification and compensation not only for conventional but also for multi-spoke RF pulses allowing in-plane B1+ homogenization using parallel transmission at UHF.  相似文献   

7.
PurposeTo develop a regularized image reconstruction algorithm for improved scan acceleration of phase-contrast (PC) flow MRI.MethodsBased on the magnitude similarity between bipolar-encoded k-space data, magnitude-difference regularization was incorporated into the conventional compressed sensing (CS) reconstruction. The gradient of the magnitude regularization was derived so the reconstruction problem can be solved using non-linear conjugate gradient with backtracking line search. Phase contrast flow data obtained in the peripheral arteries of healthy and patient subjects were retrospectively undersampled for testing the proposed reconstruction method. Three-dimensional velocity-encoded PC flow MRI was performed with prospective 4-fold undersampling for measuring arotic flow velocity in a healthy volunteer.ResultsIn the femoral arteries of healthy volunteers, the root-mean-square (RMS) errors of mean velocities were 0.56 ± 0.09 cm/s with CS-only reconstruction and 0.46 ± 0.08 cm/s with addition of magnitude regularization for three-fold acceleration; 1.34 ± 0.17 cm/s (CS only) and 1.08 ± 0.15 cm/s (magnitude regularized) for four-fold acceleration. In the iliac arteries of the patient, the RMS errors of mean velocities were 0.72 ± 0.12 cm/s and 0.56 ± 0.10 for three-fold acceleration, and 1.75 ± 0.21 and 1.24 ± 0.19 cm/s for four-fold acceleration (in the order of CS-only and magnitude regularized reconstructions). In the popliteal arteries, the RMS errors were 0.61 ± 0.10 cm/s and 0.42 ± 0.11 for three-fold acceleration, and 1.41 ± 0.19 and 1.12 ± 0.17 cm/s for four-fold acceleration. The maximum through-plane mean flow velocities were measured as 63.2 cm/s and 84.5 cm/s in ascending and descending aortas, respectively.ConclusionThe addition of magnitude-difference regularization into conventional CS reconstruction improves the accuracy of image reconstruction using highly undersampled phase-contrast flow MR data.  相似文献   

8.
《Magnetic resonance imaging》1996,14(9):1043-1051
The goal of this study was to use linear optimization techniques as a systematic method of cine phase contrast pulse sequence design and to apply this technique to the measurement of blood flow in vivo. The optimized waveforms were validated in a constant flow phantom with average velocities ranging from 5 to 50 cm/s. The same optimized sequence was also run in a segmented k-space variation with five phase encoding lines per segment. The magnetic resonance (MR) derived velocity measurements were accurate over the entire range of velocities tested (p < .05) in both cases. The same optimized pulse sequence was applied to the measurement of flow in the main pulmonary artery of five normal volunteers and compared with stroke volumes and cardiac outputs calculated from right ventricular volume measurements. These measurements showed a mean difference between the MR phase contrast calculated stroke volume and the volumetric stroke volume measurement of 9.8 ± 11.6%. The mean difference between the calculated phase contrast cardiac output and the volumetric cardiac output was 4.4 ± 10%. These results imply that optimization techniques are an efficient method for designing cine phase contrast pulse sequences.  相似文献   

9.
PurposeThis study aims to assess the usefulness of diffusion tensor imaging (DTI) as a noninvasive method for the evaluation of histological grade and lymph node metastasis in patients with oral carcinoma (OC).Materials and methodsThirty-six consecutive patients with histologically confirmed OC underwent examination by 3-T MRI. DTI was performed using a single-shot echo-planar imaging sequence with b values of 0 and 1000 s/mm2 and motion-probing gradients in 12 noncollinear directions. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) maps were compared with histopathological findings. The DTI parameters were correlated with the histological grade of the OCs based on the World Health Organization grading criteria and the presence or absence of lymph node metastasis.ResultsThe FA values (0.275 ± 0.058) of OC were significantly lower than those of normal tongue, muscle, and parotid glands (P < 0.001 for all), and the MD, AD, and RD values (1.220 ± 0.149, 1.434 ± 0.172, and 1.019 ± 0.165 × 10−3 mm2/s, respectively) were significantly higher than their respective normal values (P < 0.001 for all). Significant inverse correlations with histological grades were shown for FA, MD, AD, and RD values in OC patients (r = −0.862, r = −0.797, r = −0.747, and r = −0.844, respectively; P < 0.001 for all). In addition, there was a significant difference in the FA values of metastatic and nonmetastatic lymph nodes (0.186 vs. 0.276), MD (0.923 vs. 1.242 × 10−3 mm2/s), AD (1.246 vs. 1.621 × 10−3 mm2/s), and RD (0.792 vs. 1.100 × 10−3 mm2/s; P < 0.001 for all).ConclusionsDTI may be clinically useful for the noninvasive evaluation of histological grade and lymph node metastasis in OC patients.  相似文献   

10.
PurposeTo elucidate the influence of through-plane heart motion on the assessment of aortic regurgitation (AR) severity using phase contrast magnetic resonance imaging (PC-MRI).ApproachA patient cohort with chronic AR (n = 34) was examined with PC-MRI. The regurgitant volume (RVol) and fraction (RFrac) were extracted from the PC-MRI data before and after through-plane heart motion correction and was then used for assessment of AR severity.ResultsThe flow volume errors were strongly correlated to aortic diameter (R = 0.80, p < 0.001) with median (IQR 25%;75%): 16 (14; 17) ml for diameter>40mm, compared with 9 (7; 10) ml for normal aortic size (p < 0.001). RVol and RFrac were underestimated (uncorrected:64 ± 37 ml and 39 ± 17%; corrected:76 ± 37 ml and 44 ± 15%; p < 0.001) and ~ 20% of the patients received lower severity grade without correction.ConclusionThrough-plane heart motion introduces relevant flow volume errors, especially in patients with aortic dilatation that may result in underestimation of the severity grade in patients with chronic AR.  相似文献   

11.
BackgroundAlthough cardiac magnetic resonance (CMR) can accurately quantify global left ventricular strain using feature tracking (FT), it has been suggested that FT cannot reliably quantify regional strain. We aimed to determine whether abnormalities in regional strain measured using FT can be detected within areas of myocardial scar and to determine the extent to which the regional strain measurement is impacted by LV ejection fraction (EF).MethodsWe retrospectively studied 96 patients (46 with LVEF ≤ 40%, 50 with LVEF > 40%) with coronary artery disease and a late gadolinium enhancement (LGE) pattern consistent with myocardial infarction, who underwent CMR imaging (1.5T). Regional peak systolic longitudinal and circumferential strains (RLS, RCS) were measured within LGE and non-LGE areas. Linear regression analysis was performed for strain in both areas against LVEF to determine whether the relationship between strain and LGE holds across the LV function spectrum. Receiver-operating curve (ROC) analysis was performed in 33 patients (derivation cohort) to optimize strain cutoff, which was tested in the remaining 63 patients (validation cohort) for its ability to differentiate LGE from non-LGE areas.ResultsBoth RLS and RCS magnitudes were reduced in LGE areas: RLS = −10.4 ± 6.2% versus −21.0 ± 8.5% (p < 0.001); RCS = −10.4 ± 6.0% versus −18.9 ± 8.6%, respectively (p < 0.001), but there was considerable overlap between LGE and non-LGE areas. Linear regression revealed that it was partially driven by the natural dependence between strain and EF, suggesting that EF-corrected strain cutoff is needed to detect LGE. ROC analysis showed the ability of both RLS and RCS to differentiate LGE from non-LGE areas: area under curve 0.95 and 0.89, respectively. In the validation cohort, optimal cutoffs of RLS/EF = 0.36 and RCS/EF = 0.37 yielded sensitivity, specificity and accuracy 0.74–0.78.ConclusionAbnormalities in RLS and RCS within areas of myocardial scar can be detected using CMR-FT; however, LVEF must be accounted for.  相似文献   

12.
Rationale and objectivesIn magnetic resonance (MR) fetal imaging, the image quality acquired by the traditional Cartesian-sampled breath-hold T1-weighted (T1W) sequence may be degraded by motion artifacts arising from both mother and fetus. The radial VIBE sequence is reported to be a viable alternative to conventional Cartesian acquisition for both pediatric and adult MR, yielding better image quality. This study evaluated the role of radial VIBE in fetal MR imaging and compared its image quality and motion artifacts with those of the Cartesian T1W sequence.Materials and methodsWe included 246 pregnant women with 50 lesions on 1.5-T MR imaging. Image quality and lesion conspicuity were evaluated by two radiologists, blinded to the acquisition schemes used, using a five-point scale, where a higher score indicated a better trajectory method. Mixed-model analysis of variance and interobserver variability assessment were performed.ResultsThe radial VIBE sequence showed a significantly better performance than conventional T1W imaging in the head and neck, fetal body, and placenta region: 3.92 ± 0.88 vs 3 ± 0.74, p < 0.001, 3.8 ± 0.94 vs 3.15 ± 0.87, p < 0.001, and 4.17 ± 0.63 vs 3.12 ± 0.72, p < 0.001, respectively. Additionally, fewer motion artifacts were observed in all regions with the radial VIBE sequence (p < 0.01). Of 50 lesions, 49 presented better lesion conspicuity on radial VIBE images than on T1W images (4.34 ± 0.91 vs 3.48 ± 1.46, p < 0.001).ConclusionFor fetal imaging, the radial VIBE sequences yielded better image quality and lesion conspicuity, with fewer motion artifacts, than conventional breath-hold Cartesian-sampled T1W sequences.  相似文献   

13.
PurposeTo propose the combined modified-Dixon and PROPELLER sequence with low refocusing flip angle (RFA) and investigate whether this sequence can acquire clinical contrast-enhanced (CE), fat-suppressed T1-weighted (T1W) images of the head and neck.MethodsThe optimal RFA for T1W imaging was investigated in the brain of a healthy volunteer. The motion artifacts, water–fat separation error, contrast ratio (CR), and comprehensive quality were evaluated through comparison with a standard Cartesian modified-Dixon sequence in 50 patients. Two radiologists independently scored motion artifacts and water–fat separation error using a 4-point scale (1, unacceptable; 4, excellent) and comprehensive quality using a 5-point scale (1, substantially inferior; 5, substantially superior). The CR between CE lesions and non-CE muscle was calculated.ResultsThe optimal RFA of 40° was determined. In the motion artifact assessment, ratings of 3 or 4 points were assigned to 83% (observer-1, 42/50; observer-2, 41/50) and 99% (50/50; 49/50) of cases for the standard and proposed sequences, respectively (p < 0.001; p < 0.001). For the water–fat separation error assessment, ratings of 3 or 4 points were assigned to 100% (50/50; 50/50) and 97% (48/50; 49/50) of cases, respectively (p < 0.001; p = 0.02). In comprehensive evaluation, the proposed sequence was equal, slightly superior, or substantially superior to the standard sequence in 85% (39/50; 46/50). The CR was significantly higher with the proposed sequence [2.27 (1.99–2.97) vs. 2.08 (1.88–2.42), p < 0.001].ConclusionThe proposed sequence acquired stable fat-suppressed CE T1W images without motion artifacts and yielded superior overall image quality compared with the standard sequence.  相似文献   

14.
ObjectiveFlow dephasing artifacts within intracranial internal carotid artery (ICA) have been problematic for 3D time-of-flight magnetic resonance angiography (3D-TOF-MRA). This study aimed to evaluate pointwise encoding time reduction with radial acquisition subtraction-based MR angiography (PETRA-MRA) for decreasing flow dephasing artifacts compared to 3D-TOF-MRA in intracranial segments of ICA at 3 T.MethodsSixty healthy participants and seven patients with intracranial ICA aneurysms were enrolled to undergo 3D-TOF-MRA and PETRA-MRA. Two radiologists each evaluated the image quality of healthy participants using a 4-point scale (1: the best and 4: the worst). Quantitative analysis of the extent of homogeneity in signal intensity within the ICA and intracranial aneurysms was conducted using a parameter d: the higher the d value, the greater the signal homogeneity. Wilcoxon signed rank test, Chi-square test and the weighted kappa (κ) statistic were used for statistical analyses.ResultsThe image quality of PETRA-MRA with an overall score of 1.35 ± 0.53 was significantly better than that obtained with 3D-TOF-MRA, with an overall score of 3.50 ± 0.62 (Z = -9.56, p < 0.001). The parameter d of PETRA-MRA was higher than that of 3D-TOF-MRA for both 60 healthy participants (0.97 ± 0.05, 0.87 ± 0.11; z = -13.21, p < 0.001) and 7 patients with intracranial aneurysms (0.81 ± 0.18, 0.74 ± 0.16; z = -2.37, p = 0.018).ConclusionCompared with conventional 3D-TOF-MRA, PETRA-MRA remarkably improved the image quality with reduced flow dephasing artifacts in segments of intracranial ICA.  相似文献   

15.
PurposeTo characterize the intracranial vascular features extracted from time of flight (TOF) images and their changes from baseline to follow-up in patients undergoing carotid revascularization, using arterial spin labeling (ASL) cerebral blood flow (CBF) measurement as a reference.MethodsIn this retrospective study, brain TOF and ASL images of 99 subjects, acquired before, within 48 h, and/or 6 months after, carotid revascularization surgery were analyzed. TOF images were analyzed using a custom software (iCafe) to quantify intracranial vascular features, including total vessel length, total vessel volume, and number of branches. Mean whole-brain CBF was calculated from ASL images. ASL scans showing low ASL signal in the entire flow territory of an internal carotid artery (ICA), which may be caused by labeling failure, were excluded. Changes and correlations between time points were analyzed separately for TOF intracranial vascular features and ASL CBF.ResultsSimilar to ASL CBF, TOF vascular features (i.e. total vessel length, total vessel volume and number of branches) increased dramatically from baseline to post-surgery, then returned to a level slightly higher than the baseline in long-term follow-up (All P < 0.05). Correlation between time points was observed for all three TOF vascular features but not for ASL CBF.ConclusionIntracranial vascular features, including total vessel length, total vessel volume and number of branches, extracted from TOF images are useful in detecting brain blood flow changes induced by carotid revascularization surgery.  相似文献   

16.
PurposeMRI of the lung parenchyma is still challenging due to cardiac and respiratory motion, and the low proton density and short T2*. Clinical feasible MRI methods for functional lung assessment are of great interest. It was the objective of this study to evaluate the potential of combining the ultra-short echo-time stack-of-stars approach with tiny golden angle (tyGASoS) profile ordering for self-gated free-breathing lung imaging.MethodsFree-breathing tyGASoS data were acquired in 10 healthy volunteers (3 smoker (S), 7 non-smoker (NS)). Images in different respiratory phases were reconstructed applying an image-based self-gating technique. Resulting image quality and sharpness, and parenchyma visibility were qualitatively scored by three blinded independent reader, and the signal-to-noise ratio (SNR), proton fraction (fP) and fractional ventilation (FV) quantified.ResultThe imaging protocol was well tolerated by all volunteers. Image quality was sufficient for subsequent quantitative analysis in all cases with good to excellent inter-reader reliability. Between expiration (EX) and inspiration (IN) significant differences (p < 0.001) were observed in SNR (EX: 3.73 ± 0.89, IN: 3.14 ± 0.74) and fP (EX: 0.27 ± 0.09, IN: 0.25 ± 0.08). A significant (p < 0.05) higher fP (EX/IN: 0.22 ± 0.07/0.21 ± 0.07 (NS), 0.33 ± 0.07/0.30 ± 0.06 (S)) was observed in the smoker group. No significant FV differences resulted between S and NS.ConclusionThe study proves the feasibility of free-breathing tyGASoS for multiphase lung imaging. Changes in fP may indicate an initial response in the smoker group and as such proves the sensitivity of the proposed technique. A major limitation in FV quantification rises from the large inter-subject variability of breathing patterns and amplitudes, requiring further consideration.  相似文献   

17.
PurposeTo investigate magnetic resonance neurography (MRN) of the lumbosacral plexus (LSP) with cerebrospinal fluid (CSF) suppression by using submillimeter resolution for three-dimensional (3D) turbo spin echo (TSE) imaging.Materials and methodsUsing extended phase graph (EPG) analysis, the signal response of CSF was simulated considering dephasing from coherent motion for frequency-encoding voxel sizes ranging from 0.3 to 1.3 mm and for CSF velocities ranging from 0 to 4 cm/s. In-vivo MRN included 3D TSE data with frequency encoding parallel to the feet/head axis from 15 healthy adults (mean age: 28.5 ± 3.8 years, 5 females; acquisition voxel size: 2 × 2 × 2 mm3) and 16 pediatric patients (mean age: 6.7 ± 4.1 years, 7 females; acquisition voxel size: 0.7 × 0.7 × 1.4 mm3) acquired at 3 Tesla. Five of the adults were scanned repetitively with changing acquisition voxel sizes (1 × 2 × 2 mm3, 0.7 × 2× 2 mm3, and 0.5 × 2 × 2 mm3). Measurements of the bilateral ganglion of the L5 nerve root, averaged between sides, as well as the CSF in the thecal sac were obtained for all included subjects and compared between adults and pediatric patients and between voxel sizes, using a CSF-to-nerve signal ratio (CSFNR).ResultsAccording to simulations, the CSF signal is reduced along the echo train for moving spins. Specifically, it can be reduced by over 90% compared to the maximum simulated signal for flow velocities above 2 cm/s, and could be most effectively suppressed by considering a frequency-encoding voxel size of 0.8 mm or less. For in-vivo measurements, mean CSFNR was 1.52 ± 0.22 for adults and 0.10 ± 0.03 for pediatric patients (p < .0001). Differences in CSFNR were significant between measurements using a voxel size of 2 × 2 × 2 mm3 and measurements in data with reduced voxel sizes (p ≤ .0012), with submillimeter resolution (particularly 0.5 × 2 × 2 mm3) providing highest CSF suppression.ConclusionsApplying frequency-encoding voxel sizes in submillimeter range for 3D TSE imaging with frequency encoding parallel to the feet/head axis may considerably improve MRN of LSP pathology in adults in the future because of favorable CSF suppression.  相似文献   

18.
The evaluation of local muscle recruitment during a specific movement can be done indirectly by measuring changes in local blood flow. Intravoxel incoherent motion perfusion imaging exploits some properties of the magnetic resonance to measure locally microvascular perfusion, and seems ideally suited for this task. We studied the selectivity of the increase in intravoxel incoherent motion blood flow related parameter fD* in the muscles of 24 shoulders after two physical exam maneuvers, Jobe and Lift-off test (test order reversed in half of the volunteers) each held 2 min against resistance. After a lift-off, IVIM blood flow-related fD* was increased in the subscapularis (in 10−3 mm2 s−1, 3.24 ± 0.86 vs. rest 1.37 ± 0.58, p < 0.001) and the posterior bundle of deltoid (2.62 ± 1.34 vs. rest 0.77 ± 0.32, p < 0.001). Those increases were selective when compared with other rotator cuff muscles and deltoid bundles respectively. After a Jobe test, increase in fD* was scattered within the rotator cuff muscles, but was selective for the lateral deltoid compared to the other deltoid bundles (anterior, p < 0.001; posterior, p < 0.05). Those results were similar when the testing order was reversed. In conclusion, this study demonstrated a selective increase in local microvascular perfusion after specific muscle testing of the shoulder muscles with IVIM. This technique has the potential to non-invasively characterize perfusion-related musculoskeletal physiological as well as pathological processes.  相似文献   

19.
BackgroundFeature tracking (FT) has emerged as a promising method to quantify myocardial strain using conventional cine magnetic resonance imaging (MRI). Extracellular volume fraction (ECV) by T1 mapping enables quantification of myocardial fibrosis. To date, the correlation between FT-derived left ventricular strain and ECV has not been elucidated yet. The aim of this study was to evaluate the relationship between myocardial strain by FT and ECV by T1 mapping in patients with non-ischemic dilated cardiomyopathy (NIDCM).MethodsA total of 57 patients with NIDCM (61 ± 12 years; 46 (81%) male)) and 15 controls (62 ± 11 years; 11 (73%) male)) were studied. Using a 1.5 T magnetic resonance scanner, pre- and post- T1 mapping images of the LV wall at the mid-ventricular level were acquired to calculate the ECV by a modified Look-Locker inversion recovery (MOLLI) sequence. The radial strain (RS), circumferential strain (CS), and longitudinal strain (LS) were assessed by the FT technique. The ECV and myocardial strain were compared using a 6-segment model at the mid-ventricular level.ResultsThe ECV and myocardial strain were evaluable in all 432 segments in 72 subjects. On a patient-based analysis, NIDCM patients had a significantly higher ECV (0.30 ± 0.07 vs. 0.28 ± 0.06, p = .007) and impaired myocardial strain than the control subjects (RS, 22.7 ± 10.3 vs. 30.3 ± 18.2, p < .01; CS, −6.47 ± 1.89 vs. −9.52 ± 5.15, p < .001; LS −10.2 ± 3.78 vs. −19.8 ± 4.30, p < .001, respectively). A significant linear correlation was found between the RS and ECV (r = −0.38, p < .001) and CS and ECV, (r = 0.38, p < .001). LS and ECV also correlated (r = 0.31, p < 0.001). On a segment-based analysis, there was a significant correlation between the ECV and RS and ECV and CS (all p values < .05). The intraclass correlation coefficient was good for the strain measurement (>0.80).ConclusionsIn patients with NIDCM, significant correlation was found between myocardial strain and ECV, suggesting the FT-derived myocardial strain might be useful as a non-invasive imaging marker for the detection of myocardial fibrosis without any contrast media.  相似文献   

20.
PurposeFour-dimensional magnetic resonance angiography (4D-MRA) based on super-selective pseudo-continuous arterial spin labeling, combined with Keyhole and View-sharing (4D-S-PACK) was introduced for scan-accelerated vessel-selective 4D-MRA. Label selectivity and visualization effectiveness were assessed.MethodsNine healthy volunteers were included in the study. The label selectivity for the imaging of internal carotid artery (ICA) and external carotid artery (ECA) circulation was assessed qualitatively. The contrast-to-noise ratio (CNR) in 4D-S-PACK was measured in four middle cerebral artery (MCA) and superficial temporal artery (STA) segments and compared with that in contrast-inherent inflow-enhanced multi-phase angiography combined with the vessel-selective arterial spin labeling technique (CINEMA-select). Vessel-selective arterial visualization in 4D-S-PACK was assessed qualitatively in a patient with dural arteriovenous fistula and compared with digital subtraction angiography (DSA) and non-vessel selective 4D-PACK.Results4D-S-PACK vessel selectivity was judged to be at a clinically acceptable level in all cases except one ECA-targeted label. The CNR was significantly higher using 4D-S-PACK compared with CINEMA-select in MCA and STA peripheral segments (p < 0.001). In patient examination, territorial flow visualization in feeding artery and draining vein circulation on 4D-S-PACK were comparable with that on DSA and the identification of such responsible vessels was easier on 4D-S-PACK than on 4D-PACK.Conclusion4D-S-PACK showed high vessel-selectivity and higher visualization effectiveness compared with CINEMA-select. One clinical case was performed and ICA and ECA territorial flow was successfully visualized separately, suggesting clinical usefulness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号