首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeTo present the feasibility of highly undersampled contrast-enhanced MRA (CE-MRA) of the supraaortic arteries with a 16-channel neurovascular coil at 3.0 T using parallel imaging in two directions with parallel imaging factors (PIF) up to 16.Materials and MethodsInstitutional review board approval and informed consent were obtained. In a prospective study, MRA protocols including PIF of 1, 2, 4, 9 and 16 yielding a spatial resolution from 0.81×0.81×1.0 mm3 to 0.46×.46×0.98 mm3 were acquired. In 32 examinations, image quality and vascular segments were rated independently by two radiologists. SNR estimations were performed for all MRA protocols.ResultsThe use of high PIF allowed to shorten acquisition time from 2:09 min down to 1:13 min and to increase the anatomic coverage while maintaining or even increasing spatial resolution down to 0.46×0.46×0.98 mm3. The larger anatomic coverage that was achieved with the use of high PIF allowed for visualization of vascular structures that were not covered by the standard protocols. Despite the resulting lower SNR using high PIF, image quality was constantly rated to be adequate for diagnosis or better in all cases.ConclusionThe use of high PIF yielded diagnostic image quality and allowed to increase the anatomic coverage while maintaining or even improving spatial resolution and shortening the acquisition time.  相似文献   

2.
PurposeTo develop a real-time dynamic vocal tract imaging method using an accelerated spiral GRE sequence and low rank plus sparse reconstruction.MethodsSpiral k-space sampling has high data acquisition efficiency and thus is suited for real-time dynamic imaging; further acceleration can be achieved by undersampling k-space and using a model-based reconstruction. Low rank plus sparse reconstruction is a promising method with fast computation and increased robustness to global signal changes and bulk motion, as the images are decomposed into low rank and sparse terms representing different dynamic components. However, the combination with spiral scanning has not been well studied. In this study an accelerated spiral GRE sequence was developed with an optimized low rank plus sparse reconstruction and compared with L1-SPIRiT and XD-GRASP methods. The off-resonance was also corrected using a Chebyshev approximation method to reduce blurring on a frame-by-frame basis.ResultsThe low rank plus sparse reconstruction method is sensitive to the weights of the low rank and sparse terms. The optimized reconstruction showed advantages over other methods with reduced aliasing and improved SNR. With the proposed method, spatial resolution of 1.3*1.3 mm2 with 150 mm field-of-view (FOV) and temporal resolution of 30 frames-per-second (fps) was achieved with good image quality. Blurring was reduced using the Chebyshev approximation method.ConclusionThis work studies low rank plus sparse reconstruction using the spiral trajectory and demonstrates a new method for dynamic vocal tract imaging which can benefit studies of speech disorders.  相似文献   

3.
Many areas of magnetic resonance (MR)-guided thermal therapy research would benefit from temperature maps with high spatial and temporal resolution. Conventional thermometry relies on the subtraction of baseline images, which makes it sensitive to tissue motion and frequency drift during the course of treatment. For another case is the limit of magnetic resonance imaging sampling speed, it is hard to accurately achieve MR thermometry with high spatiotemporal resolution especially for dynamic organs. To address these issues, a novel method for MR thermometry is presented by exploiting the data redundancy based on partial separability (PS) model and the referenceless thermometry. The PS model highly sparse sample two datasets in the (kt) space for image reconstruction, which respectively determine the spatial and temporal resolutions. After the phase information is extracted from the images reconstructed by the PS model, the background phase outside the heated region from each acquired phase image through a polynomial fitting is estimated. Extrapolation of the polynomial to the heated region serves as the background phase estimate, which is then subtracted from the actual phase. The thermometry results showed that this method could accurately capture the dynamic change of MR thermometric images with 1.5 mm × 1.5 mm spatial resolution and 250 ms temporal resolution, respectively. The in vivo experiment of MR-guided high intensity focused ultrasound research and the cardiac dynamic MR thermometry are shown to demonstrate the benefits of the proposed method in high spatiotemporal resolution MR thermometry.  相似文献   

4.
PurposeTo investigate magnetic resonance neurography (MRN) of the lumbosacral plexus (LSP) with cerebrospinal fluid (CSF) suppression by using submillimeter resolution for three-dimensional (3D) turbo spin echo (TSE) imaging.Materials and methodsUsing extended phase graph (EPG) analysis, the signal response of CSF was simulated considering dephasing from coherent motion for frequency-encoding voxel sizes ranging from 0.3 to 1.3 mm and for CSF velocities ranging from 0 to 4 cm/s. In-vivo MRN included 3D TSE data with frequency encoding parallel to the feet/head axis from 15 healthy adults (mean age: 28.5 ± 3.8 years, 5 females; acquisition voxel size: 2 × 2 × 2 mm3) and 16 pediatric patients (mean age: 6.7 ± 4.1 years, 7 females; acquisition voxel size: 0.7 × 0.7 × 1.4 mm3) acquired at 3 Tesla. Five of the adults were scanned repetitively with changing acquisition voxel sizes (1 × 2 × 2 mm3, 0.7 × 2× 2 mm3, and 0.5 × 2 × 2 mm3). Measurements of the bilateral ganglion of the L5 nerve root, averaged between sides, as well as the CSF in the thecal sac were obtained for all included subjects and compared between adults and pediatric patients and between voxel sizes, using a CSF-to-nerve signal ratio (CSFNR).ResultsAccording to simulations, the CSF signal is reduced along the echo train for moving spins. Specifically, it can be reduced by over 90% compared to the maximum simulated signal for flow velocities above 2 cm/s, and could be most effectively suppressed by considering a frequency-encoding voxel size of 0.8 mm or less. For in-vivo measurements, mean CSFNR was 1.52 ± 0.22 for adults and 0.10 ± 0.03 for pediatric patients (p < .0001). Differences in CSFNR were significant between measurements using a voxel size of 2 × 2 × 2 mm3 and measurements in data with reduced voxel sizes (p ≤ .0012), with submillimeter resolution (particularly 0.5 × 2 × 2 mm3) providing highest CSF suppression.ConclusionsApplying frequency-encoding voxel sizes in submillimeter range for 3D TSE imaging with frequency encoding parallel to the feet/head axis may considerably improve MRN of LSP pathology in adults in the future because of favorable CSF suppression.  相似文献   

5.
高强度聚焦超声(HIFU)是一种无创的热消融疗法,为保证其安全性和有效性,需要一种精度高、速度快的测温方法在其治疗过程中对温度进行监控.基于质子共振频率位移(PRFS)的磁共振温度成像(MRT)对温度具有较高的灵敏度,且与温度具有良好的线性关系,因此常被用于引导HIFU治疗.然而在实际应用中,HIFU治疗的最大隐患在于可能造成表皮灼伤,并且灼伤区域可能与焦点区域相隔较远.因此MRT的监控范围十分重要.本文基于三维回波平移成像序列,结合可控混叠的空间并行成像技术,实现了时间分辨率为3 s的快速三维温度成像.为了验证该方法的精度,本文首先设计了仿体降温实验,利用光纤温度计验证回波平移序列测温的准确度和精确度.然后在室温条件下扫描离体猪肉组织,对比加速前后的MRT的测温精确度.在HIFU加热条件下扫描离体猪肉组织,对比加速前后的MRT的测温准确度.结果显示,本文提出的方法可以在3 s内完成三维温度精准测量,对于HIFU治疗的安全监控具有重要意义.  相似文献   

6.
PurposeSpatiotemporal Encoding (SPEN) is an ultrafast imaging technique where the low-bandwidth axis is rasterized in a joint spatial/k-domain. SPEN benefits from increased robustness to field inhomogeneities, folding-free reconstruction of subsampled data, and an ability to combine multiple interleaved or signal averaged scans –yet its relatively high SAR complicates volumetric uses. Here we show how this can be alleviated by merging simultaneous multi-band excitation, with intra-slab multi-echo (ME) phase encoding, for the acquisition of high definition volumetric DWI/DTI data.MethodsA protocol involving phase-cycling of simultaneous multi-banded z-slab excitations in independently ky-interleaved scans, together with ME trains that kz-encoded positions within these slabs, was implemented. A reconstruction incorporating a CAIPIRINHA-like encoding of the multiple bands and exploiting SPEN's ability to deliver self-referenced, per-shot phase maps, then led to high-definition diffusivity acquisitions, with reduced SAR and acquisition times vis-à-vis non-optimized 3D counterparts.ResultsThe new protocol was used to collect full brain 3 T DTI experiments at a variety of nominal voxel sizes, ranging from 1.95 to 2.54 mm3. In general, the new protocol yielded superior sensitivity and fewer distortions than what could be observed in comparably timed phase-encoded 3D SPEN, multi-slice 2D SPEN, or optimized EPI counterparts.ConclusionsA robust procedure for acquiring volumetric DWI/DTI data was developed and demonstrated.  相似文献   

7.
Established methods for the measurement of articular cartilage thickness are invasive and cannot be sequentially applied in living subjects. In the present study, the distribution of cartilage thickness throughout entire joint surfaces was determined from MR images obtained with a fat-suppressed gradient-echo sequence at a resolution of 0.31 × 0.31 × 2.00 mm3, and compared to that derived from CT arthrography. A minimal distance algorithm was employed to produce 3D cartilage thickness maps of seven cadaveric human knee joints. The mean amount of deviation of the cartilage volumes was 5.6% (±4.6), statistical analysis showing that there was high agreement between the two methods (r = 0.995, slope = 1.037, y-intercept = -90.5 mm3). The 3D thickness maps yielded a striking agreement between the two methods, the maximum values generally yielding a deviation of none or one thickness interval of 0.5 mm. This investigation shows that accurate 3D assessment of articular cartilage thickness can be performed with MRI, this technique having the advantage that it is suitable for investigating living subjects.  相似文献   

8.
We introduce an accelerated gradient echo (GRE) sequence combining simultaneous multislice excitation (SMS) with echo-shifting technique for high spatial resolution blood oxygen level dependent (BOLD) functional MRI (fMRI). The simulation was conducted to optimize scan parameters. To validate the feasibility of the proposed technique, the visual and motor task experiments were performed at 7.0 Tesla (T). The single-shot EPI sequence was also applied in comparison with the proposed technique. The simulation results showed that an optimized flip angle of 9° provided maximal BOLD contrast for our scanning scheme, allowing low power deposition and SMS acceleration factor of 5. Additionally, parallel acquisition imaging with acceleration factor of 2 was utilized, which allowed a total acceleration factor of 10 in volunteer study. The experiment results showed that geometric distortion-free BOLD images with voxel size of 1.0 × 1.0 × 2.5 mm3 were obtained. Significant brain activation was identified in both visual and motor task experiments, which were in accordance with previous investigations. The proposed technique has potential for high spatial resolution fMRI at ultra-high field because of its sufficient BOLD sensitivity as well as improved acquisition speed over conventional GRE-based techniques.  相似文献   

9.
ObjectiveIn this study, we sought to demonstrate the blood suppression performance, image quality and morphological measurements for compressed sensing (CS) based simultaneous 3D black- and gray-blood imaging sequence (CS-siBLAG) in carotid vessel wall MR imaging.Materials and methodsSeven healthy volunteers and five patients were recruited. Healthy subjects underwent five CS-siBLAG scans with 1, 2, 3, 4 and 5-fold accelerations. Signal-to-tissue ratio (STR) and contrast-to-tissue ratio (CTR) were computed as the measures of flowing signal suppression performance and the image quality for black-blood imaging of the technique. Vessel lumen area (LA) and wall area (WA) were compared between fully sampled acquisition and each accelerated acquisition. Patients underwent three CS-siBLAG scans with 1, 3 and 5-fold accelerations as well as a 3D time of flight (3D TOF) scan. Two radiologists reviewed the under-sampled black- and gray-blood image quality.ResultsSTR and CTR values obtained with 2 to 5-fold accelerations were not significantly different from those with full acquisition. LA and WA measured at 2 ×, 3 ×, 4 × and 5 × were all highly correlated to the corresponding values at 1 ×. For patients imaging, two radiologists both found that the dual-contrast images at 3 × acceleration exhibited comparable image quality to that of the fully sampled acquisition, and that the images at 5 × exhibited slightly blurred vessel wall and outer vessel wall boundaries.ConclusionBy combining the CS under-sampling pattern and reconstruction, pseudo-centric phase encoding order and dual blood contrast sequences, this technique provides spatially registered black- and gray-blood images and excellent visualization for vessel wall imaging and gray-blood imaging in a short scan time.  相似文献   

10.
PurposeTo compare three anisotropic acquisition schemes and three compressed sensing (CS) approaches for accelerated tissue sodium concentration (TSC) quantification using 23Na MRI at 7 T.Materials and methodsThree anisotropic 3D-radial acquisition sequences were evaluated using simulations, phantom- and in vivo TSC measurements: An anisotropic density-adapted 3D-radial sequence (3DPR-C), a 3D acquisition-weighted density-adapted stack-of-stars sampling scheme (SOS) and a SOS approach with golden-ratio rotation (SOS-GR). Eight healthy volunteers were examined at a 7 Tesla MRI system. TSC measurements of the calf were conducted with a nominal spatial resolution of Δx = (3.0 × 3.0 × 15.0) mm3 and a field of view of (156.0 × 156.0 × 240.0) mm3 for multiple undersampling factors (USF). Three CS reconstructions were evaluated: Total variation CS (TV-CS), 3D dictionary-learning compressed sensing (3D-DLCS) and TV-CS with a block matching prior (TV-BL-CS). Results of the simulations and measurements were compared to a simulated ground truth (GT) or a fully sampled reference measurement (FS), respectively. The deviation of the mean TSC evaluated in multiple ROI (mEGT/FS) and the normalized root-mean-squared error (NRMSE) for simulations were evaluated for CS and NUFFT reconstructions.ResultsIn simulations, the SOS-GR yielded the lowest NRMSE and mEGT (< 4%) with NUFFT for an acquisition time (TA) of less than 2 min. CS further improved the results. In simulations and measurements, the best TSC quantification results were obtained with 3D-DLCS and SOS-GR (lowest NRMSE, mEGT < 2.6% in simulations, mEGT < 10.7% for phantom measurements and mEFS < 6% in vivo) with an USF = 4.1 (TA < 2 min). TV-CS showed no or only slight improvements to NUFFT. The results of TV-BL-CS were similar to 3D-DLCS.DiscussionThe TA for TSC measurements could be reduced to less than 2 min by using adapted sequences such as SOS-GR and CS reconstruction approaches such as 3D-DLCS or TV-BL-CS, while the quantitative accuracy stays comparable to a fully sampled NUFFT reconstruction (approx. 8 min TA). In future, the lower TA could improve clinical applicability of TSC measurements.  相似文献   

11.
Noninvasive thermometry methods with magnetic resonance imaging usually explore the temperature dependence of the molecular diffusion coefficient of water. A method based on the temperature dependence of the proton resonance frequency is proposed in this study and compared with the diffusion method. The comparison was made with a gel phantom with muscle characteristics and for a voxel size of 0.8 × 0.8 × 10 mm3. The root-mean-square deviation of the temperature images obtained with simulations of the thermal process is between 0.1 and 0.15°C for the proton-resonance-shift-based method with an acquisition time of 1 minute and 0.9-1°C for the diffusion-based method with an acquisition time of 4.5 minutes. Unfortunately, the proton-resonance-shift method is very sensitive to the drift of the external magnetic field and therefore a method of external references was proposed to correct for this drift. The method proves to be adequate as long as the thermal be of interest do not take more than 1 hour.  相似文献   

12.
PurposeThe purpose of this paper is to investigate whether the IVIM parameters (D, D *, f) helps to determine the molecular subtypes and histological grades of breast cancer.MethodsFifty-one patients with breast cancer were included in the study. All subjects were examined by 3 T Magnetic Resonance Imaging (MRI). Diffusion-weighted imaging (DWI) was undertaken with 16 b-values. IVIM parameters [D (true diffusion coefficient), D* (pseudo-diffusion coefficient), f (perfusion fraction)] were calculated. Histopathological reports were reviewed to histological grade, histological type, and immunohistochemistry. IVIM parameters of tumors with different histological grades and molecular subtypes were compared.ResultsD* and f were significantly different between molecular subtypes (p = 0.019, p = 0.03 respectively). D* and f were higher in the HER-2 group and lower in Triple negative (−) group (D*:36.8 × 10−3 ± 5.3 × 10−3 mm2/s, f:29.5%, D*:29.8 × 10−3 ± 5.6 × 10−3 mm2/s, f:21.5% respectively). There was a significant difference in D* and f between HER-2 and Triple (−) subgroups (p = 0,028, p = 0.024, respectively). D* was also significantly different between the HER-2 group and the Luminal group (p = 0,041). While histological grades increase, D and f values tend to decrease, and D* tends to increase. While the Ki-67 index increases, D* and f values tend to increase, and D tend to decrease.ConclusionD* and f values measured with IVIM imaging were useful for assessing breast cancer molecular subtyping. IVIM imaging may be an alternative to breast biopsy for sub-typing of breast cancer with further research.  相似文献   

13.
BackgroundTo evaluate 3-dimensional amide proton transfer weighted (APTw) imaging for type I endometrial carcinoma (EC), and investigate correlations of Ki-67 labelling index with APTw and intravoxel incoherent motion (IVIM) imaging.Methods54 consecutive patients suspected of endometrial lesions underwent pelvic APTw and IVIM imaging on a 3 T MR scanner. APTw values and IVIM-derived parameters (Dt, D*, f) were independently measured by two radiologists on 22 postoperative pathological confirmed of type I EC lesions. Results were compared between histological grades and Ki-67 proliferation groups. ROC analysis was performed. Pearson's correlation analysis was performed for APTw values and IVIM-derived parameters with Ki-67 labeling index.ResultsAPTw values and Dt, D*, f of all type I EC were 2.9 ± 0.1%, 0.677 ± 0.027 × 10−3 mm2/s, 31.801 ± 11.492 × 10−3 mm2/s, 0.179 ± 0.050 with inter-observer ICC 0.996, 0.850, 0.956, 0.995, respectively. APTw values of Ki-67 low-proliferation group (<30%, n = 8) were 2.5 ± 0.2%, significantly lower than the high-proliferation group (>30%, n = 14) with APTw values of 3.1 ± 0.1% (p = 0.016). Area under the curve was 0.768. APTw values of type I EC were moderately positively correlated with Ki-67 labelling index (r = 0.583, p = 0.004). There was no significant difference of Dt (p = 0.843), D* (p = 0.262), f (p = 0.553) between the two groups. No correlation was found between IVIM-derived parameters and Ki-67 labelling index (Dt, p = 0.717; D* p = 0.151; f, p = 0.153).Conclusion3D TSE APTw imaging is a feasible approach for detecting type I EC. Ki-67 labeling index positively moderately correlates with APTw not with IVIM.  相似文献   

14.

Purpose

The goal of this study was to implement time efficient data acquisition and reconstruction methods for 3D magnetic resonance spectroscopic imaging (MRSI) of gliomas at a field strength of 3T using parallel imaging techniques.

Methods

The point spread functions, signal to noise ratio (SNR), spatial resolution, metabolite intensity distributions and Cho:NAA ratio of 3D ellipsoidal, 3D sensitivity encoding (SENSE) and 3D combined ellipsoidal and SENSE (e-SENSE) k-space sampling schemes were compared with conventional k-space data acquisition methods.

Results

The 3D SENSE and e-SENSE methods resulted in similar spectral patterns as the conventional MRSI methods. The Cho:NAA ratios were highly correlated (P<.05 for SENSE and P<.001 for e-SENSE) with the ellipsoidal method and all methods exhibited significantly different spectral patterns in tumor regions compared to normal appearing white matter. The geometry factors ranged between 1.2 and 1.3 for both the SENSE and e-SENSE spectra. When corrected for these factors and for differences in data acquisition times, the empirical SNRs were similar to values expected based upon theoretical grounds. The effective spatial resolution of the SENSE spectra was estimated to be same as the corresponding fully sampled k-space data, while the spectra acquired with ellipsoidal and e-SENSE k-space samplings were estimated to have a 2.36–2.47-fold loss in spatial resolution due to the differences in their point spread functions.

Conclusion

The 3D SENSE method retained the same spatial resolution as full k-space sampling but with a 4-fold reduction in scan time and an acquisition time of 9.28 min. The 3D e-SENSE method had a similar spatial resolution as the corresponding ellipsoidal sampling with a scan time of 4:36 min. Both parallel imaging methods provided clinically interpretable spectra with volumetric coverage and adequate SNR for evaluating Cho, Cr and NAA.  相似文献   

15.
The hippocampal formation possesses an important role in the development and maintenance of short-term memory. In this study, magnetic resonance imaging (MRI) and gross histology were used to quantify the volume of the hippocampal formation in canines. High resolution MRI, using 1 mm thick slices and an intraplanar resolution of 0.35 mm was performed at 2.0 T both in vivo and in vitro following in situ fixation. The volumes of the hippocampal formations were determined from MR images and compared to those obtained from one mm thick gross histologic sections. The average volume of the canine hippocampal formation, measured from in vivo and in vitro MR images was 476.0 ± 79.5 and 467.3 ± 53.7 mm3, respectively. Determined from gross histology, the volume of the hippocampal formation was 463.6 ± 24.1 mm3. Quantitation of the canine hippocampal formation using in vivo MRI showed good correlation with in vitro MRI and histology, verifying the reliability and reproducibility of in vivo MRI measurements. High resolution MRI using 1 mm thick slices through the whole canine hippocampal formation is necessary for accurate volume determination of a structure of this size.  相似文献   

16.

Purpose

Greater spatial resolution in intracranial three-dimensional time-of-flight (TOF) magnetic resonance angiography (MRA) is possible at higher field strengths, due to the increased contrast-to-noise ratio (CNR) from the higher signal-to-noise ratio and the improved background suppression. However, at very high fields, spatial resolution is limited in practice by the acquisition time required for sequential phase encoding. In this study, we applied parallel imaging to 7T TOF MRA studies of normal volunteers and patients with vascular disease, in order to obtain very high resolution (0.12 mm3) images within a reasonable scan time.

Materials and Methods

Custom parallel imaging acquisition and reconstruction methods were developed for 7T MRA, based on generalized autocalibrating partially parallel acquisition (GRAPPA). The techniques were compared and applied to studies of seven normal volunteers and three patients with cerebrovascular disease.

Results

The technique produced high resolution studies free from discernible reconstruction artifacts in all subjects and provided excellent depiction of vascular pathology in patients.

Conclusions

7T TOF MRA with parallel imaging is a valuable noninvasive angiographic technique that can attain very high spatial resolution.  相似文献   

17.
BackgroundMR fingerprinting (MRF) is a versatile method for rapid multi-parametric quantification. The application of MRF for lower MRI field could enable multi-contrast imaging and improve exam efficiency on these systems. The purpose of this work is to demonstrate the feasibility of 3D whole-brain T1 and T2 mapping using MR fingerprinting on a contemporary 0.55 T MRI system.Materials and methodsA 3D whole brain stack-of-spirals FISP MRF sequence was implemented for 0.55 T. Quantification was validated using the NIST/ISMRM Quantitative MRI phantom, and T1 and T2 values of white matter, gray matter, and cerebrospinal fluid were measured in 19 healthy subjects. To assess MRF performance in the lower SNR regime of 0.55 T, measurement precision was calculated from 100 simulated pseudo-replicas of in vivo data and within-session measurement repeatability was evaluated.ResultsT1 and T2 values calculated by MRF were strongly correlated to standard measurements in the ISMRM/NIST MRI system phantom (R2 > 0.99), with a small constant bias of approximately 5 ms in T2 values. 3D stack-of-spirals MRF was successfully applied for whole brain quantitative T1 and T2 at 0.55 T, with spatial resolution of 1.2 mm × 1.2 mm × 5 mm, and acquisition time of 8.5 min. Moreover, the T1 and T2 quantifications had precision <5%, despite the lower SNR of 0.55 T.ConclusionA 3D whole-brain stack-of-spirals FISP MRF sequence is feasible for T1 and T2 mapping at 0.55 T.  相似文献   

18.

Purpose

To investigate an effective time-resolved variable-density random undersampling scheme combined with an efficient parallel image reconstruction method for highly accelerated aortic 4D flow MR imaging with high reconstruction accuracy.

Materials and Methods

Variable-density Poisson-disk sampling (vPDS) was applied in both the phase-slice encoding plane and the temporal domain to accelerate the time-resolved 3D Cartesian acquisition of flow imaging. In order to generate an improved initial solution for the iterative self-consistent parallel imaging method (SPIRiT), a sample-selective view sharing reconstruction for time-resolved random undersampling (STIRRUP) was introduced. The performance of different undersampling and image reconstruction schemes were evaluated by retrospectively applying those to fully sampled data sets obtained from three healthy subjects and a flow phantom.

Results

Undersampling pattern based on the combination of time-resolved vPDS, the temporal sharing scheme STIRRUP, and parallel imaging SPIRiT, were able to achieve 6-fold accelerated 4D flow MRI with high accuracy using a small number of coils (N = 5). The normalized root mean square error between aorta flow waveforms obtained with the acceleration method and the fully sampled data in three healthy subjects was 0.04 ± 0.02, and the difference in peak-systolic mean velocity was − 0.29 ± 2.56 cm/s.

Conclusion

Qualitative and quantitative evaluation of our preliminary results demonstrate that time-resolved variable-density random sampling is efficient for highly accelerating 4D flow imaging while maintaining image reconstruction accuracy.  相似文献   

19.
SSFP-based fMRI techniques, known for their high specificity and low geometrical distortion, look promising for high-resolution brain mapping. Nevertheless, they suffer from lack of speed and sensitivity, leading them to be exploited mostly in high-field scanners. Radial acquisition can help with these inefficiencies through better tSNR and more effective coverage of the spatial frequencies. Here, we present a SSFP-fMRI approach and experimentally investigate it at 3 T scanners using radial readout for acquisition. In particular, the visual activity is mapped through three bSSFP techniques: 1- Cartesian, 2- Radial with re-gridding reconstruction, 3- Radial with Polar Fourier Transform (PFT) reconstruction. In the PFT technique streaking artifacts, generated at high acceleration rates by re-gridding reconstruction, are avoided and pixel size in the final framework is retrospectively selectable. General agreement, but better tSNR of Radial reading, was first confirmed for these techniques in detection of neural activities at 2 × 2 mm2 in-plane resolution for all 28 subjects,. Next the outcome of the PFT algorithm with 1 × 1 mm2 pixel size was compared to images reconstructed by re-gridding (from the same raw data) with the identical pixel size through interpolation. The localization of the activity showed improvement in PFT over interpolation both qualitatively (i.e., well-fitting in gray-matter) and quantitatively (i.e., higher z-scores and tSNR). The proposed technique can therefore be considered as a remedy for lack of speed and sensitivity in SSFP-based fMRI, in conventional field strengths. The proposed approach is particularly useful in task-based studies when we concentrate on a ROI considerably smaller than FOV, without sacrificing spatial resolution.  相似文献   

20.
PurposeTo develop a fast volumetric T1 mapping technique.Materials and methodsA stack-of-stars (SOS) Look Locker technique based on the acquisition of undersampled radial data (>30× relative to Nyquist) and an efficient multi-slab excitation scheme is presented. A principal-component based reconstruction is used to reconstruct T1 maps. Computer simulations were performed to determine the best choice of partitions per slab and degree of undersampling. The technique was validated in phantoms against reference T1 values measured with a 2D Cartesian inversion-recovery spin-echo technique. The SOS Look Locker technique was tested in brain (n = 4) and prostate (n = 5). Brain T1 mapping was carried out with and without kz acceleration and results between the two approaches were compared. Prostate T1 mapping was compared to standard techniques. A reproducibility study was conducted in brain and prostate. Statistical analyses were performed using linear regression and Bland Altman analysis.ResultsPhantom T1 values showed excellent correlations between SOS Look Locker and the inversion-recovery spin-echo reference (r2 = 0.9965; p < 0.0001) and between SOS Look Locker with slab-selective and non-slab selective inversion pulses (r2 = 0.9999; p < 0.0001). In vivo results showed that full brain T1 mapping (1 mm3) with kz acceleration is achieved in 4 min 21 s. Full prostate T1 mapping (0.9 × 0.9 × 4 mm3) is achieved in 2 min 43 s. T1 values for brain and prostate were in agreement with literature values. A reproducibility study showed coefficients of variation in the range of 0.18–0.2% (brain) and 0.15–0.18% (prostate).ConclusionA rapid volumetric T1 mapping technique was developed. The technique enables high-resolution T1 mapping with adequate anatomical coverage in a clinically acceptable time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号